
A Modular Heterogeneous Stack for Deploying FPGAs and CPUs
in the Data Center

Nariman Eskandari
University of Toronto
Toronto, Ontario

nariman.eskandari@mail.utoronto.ca

Naif Tarafdar
University of Toronto
Toronto, Ontario

naif.tarafdar@mail.utoronto.ca

Daniel Ly-Ma
University of Toronto
Toronto, Ontario

d.lyma@mail.utoronto.ca

Paul Chow
University of Toronto
Toronto, Ontario

pc@eecg.toronto.edu

ABSTRACT
In this work we present a heterogeneous deployment stack, called
Galapagos, that includes the abstraction of individual nodes (FPGAs
and CPUs), the communication protocols between nodes and the
orchestration and connection of these nodes into clusters. The stack
we create is also highly modular, allowing users to explore a design
space in the implementation of their cluster such as different net-
work protocols or communication layers. The communication layer
we have currently implemented within our hardware stack, called
HUMboldt, handles heterogeneous communication between multi-
ple FPGAs and CPUs. We implement HUMboldt using High-Level
Synthesis (HLS) to ensure functional portability of communicating
kernels, allowing us to prototype hardware kernels in software.
Our results have shown that our modular approach to this het-
erogeneous deployment stack has introduced very little area and
latency overhead in the FPGAs and can still perform at line-rate,
bottlenecked solely by the network links connecting the nodes. Our
results also highlight the scalability of our design as our perfor-
mance remains limited by the network links when the cluster size
increases.

KEYWORDS
Abstraction layers, reconfigurable computing, deployment stack,
heterogeneous computing, FPGAs, communication Layer, orches-
tration, high-performance computing, cloud computing

ACM Reference Format:
Nariman Eskandari, Naif Tarafdar, Daniel Ly-Ma, and Paul Chow. 2019.
A Modular Heterogeneous Stack for Deploying FPGAs and CPUs in the
Data Center. In The 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19), February 24–26, 2019, Seaside, CA,
USA. ACM, New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/
3289602.3293909

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293909

1 INTRODUCTION
The integration of accelerators in the data center has been shown
to be beneficial [1, 2] but using heterogeneity can be difficult for
data center application developers and system administrators. This
heterogeneity is especially difficult for application developers when
integrating FPGAs as this usually requires the user to design the
application and management circuitry, including the network stack
and memory management. This difficulty increases substantially at
scale not only for the management of the individual FPGAs but the
connection and communication between them. In this work we ap-
proach the challenge of integrating FPGAs at scale through the use
of a hardware stack shown in Figure 1. A hardware stack, analogous
to software stacks, represents different layers of abstraction, giving
users the flexibility for the amount of abstraction they require and
allows them to have different implementations of individual layers
of the stack. The flexibility provided by a modular implementation
of a stack allows researchers to explore a design space with respect
to different implementations of heterogeneous clusters easily, as
the layers can be changed independent of each other as long as
the interfaces between the layers remain the same. Some example
explorations could be the research of the integration of future inter-
net network protocols such as Content Centric Networks or IPV6,
or using different transport layers such as TCP or UDP, or building
application-specific layers.

Figure 1: Our definition of a hardware deployment stack
with traditional software deployment stack [3].

For both application developers and system administrators, the
lack of a common communication standard among clusters of accel-
erators and CPUs raises challenges in creating communication links
between different devices, and supporting the network connections
between these devices. This communication layer is a bridge be-
tween the hardware deployment stack we made in this paper with

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

262

https://doi.org/10.1145/3289602.3293909
https://doi.org/10.1145/3289602.3293909
https://doi.org/10.1145/3289602.3293909

traditional software deployment stacks. Another desirable attribute
for application developers is functional portability of a distributed
application across different devices, which usually requires a devel-
oper to tailor an application specifically for each device and manage
its communication. Both heterogeneity and functional portability
become even more daunting at the data center scale where we can
have potentially thousands of nodes interacting. We believe the
challenges can be addressed with a portable communication layer
across both CPUs and FPGAs, which we address in this paper.

The main contributions of this paper are as follows. First, we
create our heterogeneous deployment stack by building on top
of an open source FPGA orchestration tool [4]. The original tool
maps streaming FPGA kernels onto FPGA abstractions and con-
nects the multiple FPGAs together. This tool handles the abstraction
of individual FPGAs and FPGA clusters. However, due to specific
implementation issues, there are some scalability limitations that
we first address. We also change the tool from a monolithic FPGA
clustering tool to a heterogeneous deployment stack by introducing
modularity at different layers such as the Communication layer
and Middleware/Network layer. We demonstrate the modularity by
having the same application communicate over different network
protocols, such as Ethernet and TCP, without changing the appli-
cation. In this paper Ethernet refers to Layer 2 Ethernet protocol
within the OSI Network stack. We call our entire heterogeneous
deployment stack Galapagos. As an example communication layer
within Galapagos we build HUMboldt, which is a heterogeneous
message passing communication layer, allowingmessages to be sent
amongst and across different FPGA kernels and CPU kernels. This
is implemented as a high-level synthesisizable (HLS) and software
library allowing an application developed with this library to be
functionally portable across both CPUs and FPGAs. The functional
portability is important because it enables application development
in a pure software environment. Once correct functionality has
been achieved, parts of the code can be ported to run as hardware
without modifying the code.

The remainder of the paper is organized as follows. Section 2
provides background about our definition of a heterogeneous stack,
different communication models and the infrastructure we build on.
Section 3 explores related works in traditional software deployment
stacks, other communication layers specifically onmulti-FPGA clus-
ters. Section 4 explores our modular rebuild of an FPGA cluster
generator, the implementation details of our communication layer,
and provides details on how to interface with our system and tool
flow. Section 6 shows our results with microbenchmarks measuring
the performance of our communication layer and infrastructure be-
tween FPGAs and CPUs. Lastly, we conclude our paper in Section 7
and give future work in Section 8.

2 BACKGROUND
In this section, we introduce our Hardware Stack for deploying het-
erogeneous applications in FPGA and CPU clusters. This stack can
be seen in Figure 1. We elaborate in detail on the Communication
Layer as this layer is used to bridge FPGA and CPU nodes within a
cluster. We also highlight other layers that are used at the lower
levels for various levels of abstraction.

Each layer of the stack represents a different view of usability
for the user. Each of these layers provides a standard API to the
layer above. This allows a user to have different implementations
of a particular layer of the stack without a complete redesign of
their system, as long as they maintain the API between these layers.
The modularity of the stack allows researchers to explore a design
space of different implementations of heterogeneous clusters. The
bottom layer of both stacks, which is the Physical Hardware layer,
represents the actual physical hardware with no abstraction. The
next layer, which is the Hypervisor layer in Hardware and the OS-
/Hypervisor layer in Software, represents a single node abstraction.
In both hardware and software, the user is provided a set of abstrac-
tions for the I/O on the individual node. In our hardware stack there
is no virtualization on the I/O as the user gets full access to the I/O,
whereas software virtualization allows multiple users to share the
I/O with the view that they each have the full I/O port. The layer
above the Hypervisor refers to the orchestration and connection of
individually abstracted nodes, which we refer to as Middleware/Net-
working in Hardware and Orchestration/Networking in Software.
Lastly, we bridge the hardware and software stack through the
use of a Communication layer. The Communication layer is highly
dependent on the communication model of a given application. In
this work we implement an example Communication layer but due
to the modular design of our system other communication layers
can be built.

2.1 Hypervisor and Middleware/Network Layer
In this section, we describe the open source framework that pro-
vides us with the Hypervisor and Middleware/Network Layer of the
hardware stack. We rebuild the original Middleware/Network layer
to increase its scalability and modularity. This framework is de-
scribed in [4] and further extended in [5]. In these works, Tarafdar
et al. introduce a multi-FPGA abstraction layer that maps a graph
of streaming IP blocks connected by a large logical switch onto a
multi-FPGA network-connected cluster that is provisioned from an
elastic pool of cloud resources. From a high-level, the user provides
a collection of kernels, a logical file describing the entire cluster
and a mapping file of kernels to physical FPGAs. The high-level
view of this framework is shown in Figure 2. The user is returned a
network handle for their FPGA cluster.

Figure 2: High-level view of original open-source frame-
work

Each FPGA in the cluster has its physical resources abstracted
with a Hypervisor. The Hypervisor exposes a control interface
through PCIe and a data interface through the 10G Ethernet port,

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

263

connecting to an application region. The high-level view of the
Hypervisor is shown in Figure 3. Within the application region, the
framework places an interconnect on each FPGA to interface with
all kernels within the cluster (either directly connects to kernels
that are locally connected or encapsulates the packet with network
information to make a network hop). This direct connection to all
packets has an inherent limitation as the interconnect has at most
16 ports, thus limiting the total number of kernels within the entire
cluster to 16. Furthermore, the modularity of this implementation is
limited as the user is forced to use Ethernet packets between FPGAs,
making the communication unreliable. More details about the data
center infrastructure, and network architecture can be found in [4],
and more details on the FPGA Hypervisor can be found in [5].

Figure 3: Hypervisor

2.2 Communication Layer
The communication layer is very application-specific as different ap-
plications exhibit different communication traffic patterns. Two pop-
ular communication models are streaming and message passing. In
a streaming model, data is being sent continuously through a point-
to-point channel. Some implementations of streaming communica-
tion layers include the Real-time streaming protocol (RTSP) [6] and
MPEG-DASH [7]. These layers are typically built on top of network
protocols like UDP, or even Ethernet as these protocols have better
latency but lack reliability by default.

In a message passing model, data can be transferred between
arbitrary nodes. Generally, shorter packets provide lower latency
while longer packets provide better throughput because message
overheads are minimized. Users must partition data into messages
and include a destination address when sending, unlike a stream
where it is a continuous flow of data to one or more preconfigured
receivers. The most common implementation of a message passing
model is the Message Passing Interface (MPI) [8]. We have decided
to implement our first communication layer as a subset of MPI
because there has been prior work in implementing MPI on an
FPGA cluster. MPI is also a well-known standard API that is widely
used in various types of HPC applications. This helps us with our
goals of heterogeneity, functional portability and scalability.

Another messaging protocol that has a significant user commu-
nity is ZeroMQ (0MQ) [9]. ZeroMQ uses a socket-like interface
that supports multiple message patterns such as request-reply and
publish-subscribe. By using a socket-like interface, it would also be
easier to use it like a FIFO, or streaming interface.

3 RELATEDWORK
The work we present in this paper is a heterogeneous multi-FPGA
and CPU deployment stack. In this section, we explore other de-
ployment stacks used in a homogeneous CPU environment as well
as other FPGA cluster implementations and heterogeneous com-
munication layers.

3.1 Software Deployment Stacks
Distributed and big data computing often requires the use of many
compute nodes, traditionally software nodes. Figure 1 on the right
shows an example of a software stack. Clusters of software nodes are
grouped and connected with orchestration software such as Heat,
which is part of OpenStack [10]. Orchestration software usually
provisions a group of individual software nodes, and connects the
software nodes between them. These nodes are often connected
with popular network protocols such as IP. However on top of these
interconnected software nodes, depending on the application, a user
can deploy a communication layer to easily communicate between
these nodes. For example, if the application describes streaming
kernels then the user would want to use a communication layer
amenable to streaming such as ZeroMQ [9].

3.2 FPGA Cluster Implementations for the
Data Center

The flagship implementation of FPGAs in the data center is Mi-
crosoft’s first version of Catapult, which includes FPGA clusters
connected to a CPU as an offload engine [1]. This has limited flexi-
bility as the FPGAs are connected to the network through the CPU.
Microsoft addressed this lack of flexibility in their second iteration
of Catapult [2], in which all FPGAs are connected to the network
directly. To keep the network switch requirements constant, CPU
network connections are made through the FPGA, as opposed to
having both CPUs and FPGAs connected to the network. The work
presented in this paper has a physical infrastructure similar to that
of the second iteration of Catapult with network-connected FPGAs,
however we also connect the CPUs directly to the network, avoid-
ing the complexity of bypassing CPU network packets through the
FPGA. We approach the challenge of heterogeneity by creating a
uniform communication layer between CPUs and FPGAs to vir-
tualize a heterogeneous network connection to look the same to
both hardware and software functions. Our work also builds on top
of [4], which is an orchestration layer on top of a heterogeneous
network fabric, abstracting away the difficulties of configuring a
multi-FPGA cluster. This is a higher level of abstraction than used
in Catapult based on what is presented in the available publications.

There has been some work at a smaller scale to provide multi-
FPGA orchestration. One example is the Maxeler MPC-X project
[11]. A ring of eight FPGAs is connected to a network that can re-
ceive job requests as data-flow graphs. This data-flow graph is then
mapped onto a set of the FPGAs available in the ring, abstracting
the mapping and representation of a multi-FPGA application onto
a physical multi-FPGA topology. Our work in this paper looks at a
similar level of abstraction in a flexible network topology such as
the one in Catapult.

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

264

3.3 Heterogeneous Communication Layers
In this section, we explore other implementations of heterogeneous
communication layers. We look at two in particular: the first being
TMD-MPI [12] and the second being Novo-G# [13].

3.3.1 TMD-MPI. The work presented in [12] explores an imple-
mentation of MPI within a multi-FPGA environment called TMD-
MPI. TMD-MPI implements a subset of the MPI protocol to allow
hardware or software processing engines on the FPGA to commu-
nicate amongst each other on the same FPGA and across multiple
FPGAs. The hardware versions of the MPI functions are imple-
mented in VHDL. In this paper, a subset of these functions are
described in HLS-synthesizable C code.

TMD-MPI was created to be portable across multiple physical
platforms so it was implemented in several layers, including layers
that correspond to the physical setup of the network connected FP-
GAs. In this paper, we avoid the need to create equivalent layers as
our communication layer modularly builds on an improved cluster
generator tool that handles the communication of blocks within an
FPGA and across multiple FPGAs in a data center.

3.3.2 Novo-G#. The work presented in [13] is a heterogeneous
environment with 24 CPU servers that are connected via PCIe to
FPGA boards with 4 Stratix V FPGAs. There are direct connects
between the FPGAs on an individual board forming a 3D torus
with a custom hardware network stack to support these direct
connections. If needed, communication between host nodes can
use MPI. The Novo-G# is a system that shows both the use of a
custom hardware network stack for FPGA-to-FPGA communication
as well as a model where accelerators are connected to host nodes
and the host nodes can communicate using a standard software MPI
library. In this paper, hardware and software components of the
same application can communicate with the same communication
layer as peers, which makes it much easier to use hardware or
software interchangeably for any computing kernel.

4 IMPLEMENTATION
We rebuilt the open source framework described in [4] to improve
modularity, reliability, and scalability. This improved framework
provides the Galapagos stack with the Hypervisor and Middle-
ware/Network Layer. These improvements allow the user to imple-
ment designs with different network protocols (e.g Ethernet or TCP)
and communication layers by changing a configuration file describ-
ing the heterogeneous cluster. The user can target any number of
available devices (FPGA and/or CPU) with a limit of 16 kernels per
FPGA due to the number of ports on the Xilinx switch IP core. Once
we addressed a few limitations of the original open-source frame-
work, we built HUMboldt as a Communication Layer. Due to the
modularity of the system, HUMboldt can fit on top of both TCP and
Ethernet without changing the user application and its interfaces.
HUMboldt maintains functional portability between hardware and
software nodes. The heterogeneous connection between FPGAs
and CPUs is easy to scale up as the user only needs to change two
configuration files.

4.1 Galapagos Middleware/Networking Layer
The application region that can be built by the original open-source
framework Middleware/Network Layer and the Galapagos Middle-
ware/Network Layer can be seen in Figures 4 and 5. Both itera-
tions of this framework take a description of a cluster composed
of streaming kernels with a unique ID and maps it to multiple
FPGAs. Each streaming kernel uses the AXI-stream protocol [14]
with a dest field to specify which kernel the packet is destined for.
A logical view of this infrastructure is a large switch connecting
all the kernels within the cluster. The framework transforms this
logical switch into two physical switches, with the first being an
AXI-stream switch on the FPGA and the second being a top-of-rack
network switch.

Figure 4: The original open-source framework from [4].

Figure 5: A high-level overview of Galapagos.

In the framework, described in [4] Ethernet packets are trans-
formed into AXI-stream packets through the use of an Input Bridge.
This then connects to an AXI-stream switch on the FPGA. This
switch is connected to all kernels within the cluster, either directly
if on the same FPGA, or through a Packet-Formatter module that
encapsulates the AXI-stream packet with the appropriate Ether-
net headers, and places the AXI-stream dest field in the Ethernet
payload (one packet formatter for each kernel outside the FPGA).
These direct connections limit scalability as the number of kernels
in the cluster is limited by the 16 ports of the AXI-stream switch.

In the Middleware/Network Layer of Galapagos, we first ad-
dressed scalability by creating an AXI-stream router. The AXI-
stream protocol is independent of higher layer protocols. The block
diagram of the router is shown in Figure 6. The router on each
FPGA includes a routing table indexed by the unique ID of each
kernel in the entire cluster (including kernels not on this FPGA)
and the network address (Ethernet or IP) of the FPGA that has each
kernel. All kernels output their packets to the router that reads the
AXI-stream dest field of the packet and then looks up the network

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

265

destination in the routing table. Then, the packet is either routed
back to the AXI-stream switch or routed out to the network. The
number of ports on this router is equal to the number of kernels
only on this FPGA, as all packets leaving the FPGA share one chan-
nel. This limits us to have up to 16 kernels on a particular FPGA as
opposed to the entire cluster as per the original design. The routing
table is automatically generated by our modifications to the cluster
generator.

Figure 6: Router

The network bridge that is shown in Figure 5 is responsible for
converting network packets into AXI-stream format and vice versa.
For the Ethernet Network Bridge of Figure 5, this paper combines
the Input Bridge and a modified version of the Packet Formatter of
Figure 4 into a single module. The block diagram of this module is
shown in Figure 7. The modified packet formatter is equipped with
a look up table that has the MAC addresses for each destination
kernel. Using the MAC address lookup table in the packet formatter
decreases resource utilization as it only uses one packet formatter
logic with a small memory instead of multiple packet formatters
for each kernel outside the FPGA, and it helps the Galapagos to be
more scalable.

In [4] the multi-FPGA communication uses the Ethernet pro-
tocol, which is not reliable. In the Middleware/Network Layer of
Galapagos, to address reliability, an optional TCP core [15] is in-
tegrated into the framework. In this paper an additional Network
Bridge is created for TCP, allowing us to standardize the interface
between the Hypervisor and the Application Region. The standard-
ization of the interface allows us to use both TCP and Ethernet
interchangeably, thus addressing modularity. The block diagram
of the TCP Network Bridge is illustrated in Figure 8. Observe that
the interfaces are the same as for the Ethernet Network Bridge in
Figure 7.

A user may wish to create a communication layer (e.g. MPI) on
top of standard network layers. A communication bridge is used
to transform network packets to communication layer compliant
packets. In the Middleware/Network Layer of Galapagos, we have
implemented a Comm Bridge that translates the AXI-stream pack-
ets of the Network Bridge to conform to the underlying MPI packet
protocol used by HUMboldt. If we wanted to support ZeroMQ we
would implement an appropriate Comm Bridge to support that
protocol. Separating the functions of the Network Bridge and the
Comm Bridge makes it possible to change the network protocol

Figure 7: Ethernet Net-
work Bridge

Figure 8: TCP Network Bridge.

independent of the communication layer, and vice versa. We further
address modularity by allowing the user to configure the network
protocol (Ethernet or TCP) and communication bridge via the map-
ping configuration file. Details of the mapping file can be found in
Section 4.3.

4.2 HUMboldt Communication Layer
Due to the layered design of Galapagos, the implementation of the
communication layer can be any communication model as long as
it adheres to the AXI-stream interface, and the appropriate commu-
nication bridge to convert AXI-stream packets into communication
layer specific packets is provided. The communication layer we
present here implements HUMBoldt, a minimal subset of MPI that is
sufficient to enable basic message passing between kernels. MPI is a
standard API that defines signatures for functions such as sending
and receiving messages. These signatures must remain the same
for all implementations of MPI. Even though the implementation
for these functions vary according to platform (e.g FPGA or CPU),
the standardization of the protocol for HUMBoldt allows for com-
munication between heterogeneous platforms.

4.2.1 MPI Communication Layer. Here, we provide a brief explana-
tion of MPI and the subset of the MPI library that we support, which
we call Heterogeneous Uniform Messaging (HUMboldt). Using MPI,
many parallel processes (ranks) communicating via messages can
be run on multi-node platforms. We will refer to ranks as kernels
to be consistent with our previous use of the term kernels. In MPI
software implementations, such as MPICH [16] and OpenMPI [17],
functions are provided to transmit data among different kernels in
various ways. The minimum subset of MPI functions needed for
communication and currently implemented in HUMboldt:

(1) MPI_Init: This function initializes the MPI environment, and
does the basic setup such as network interface initialization.

(2) MPI_Send and MPI_Recv: These two functions are building
blocks of the MPI programming model that enable data trans-
mission among kernels. For every Send to a kernel, there
must be a matching Receive on that kernel to get the data
from the sender.

(3) MPI_Finalize: Makes sure that all kernels are done with their
processes.

Other MPI functions can be added to the HUMboldt library by
writing additional HLS-synthesizable functions. These functions
will fit into the same HUMboldt flow.

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

266

There are two types of networks in our HUMBoldt communica-
tion layer. The Intra-FPGA AXI-stream network is used for kernels
that are located in the same physical FPGA, and the Inter-node
communication between FPGAs and CPUs uses the network. The
network communication currently supports TCP or Ethernet but
any network protocol with an AXI-stream interface can be used.
We use the same underlying HUMBoldt protocol for kernels commu-
nicating within the same node (FPGA or CPU) and between nodes,
as our communication bridge encapsulates a HUMBoldt compliant
packet with the appropriate network header (e.g TCP or Ethernet)
to handle the inter-node communication.

Figure 9 shows the Envelope that carries the HUMBoldtmessages
between kernels. The first two bytes correspond to the destination
and source kernels. The Packet Types are send request, clear to send,
data, or done, where the different packet types are used to imple-
ment the message passing protocol underlying HUMBoldt. The next
three bytes specify the size of the message being sent. In the stan-
dard implementation of MPI, the Tag is an option for the user to tag
optional metadata to transactions, and for compatibility purposes
we keep this as a field in the Envelope used for HUMBoldt. The
Data Type field helps to process the different data types properly.

Figure 9: Envelope Packet

4.3 System Interface
This subsection specifies how the user would interface with the
Galapagos hardware stack. A user provides application files as well
as the cluster description files. The tool flow of the heterogeneous
stack takes these files, and makes a cluster that all the hardware
and software kernels can communicate.

In Listing 1, we illustrate an example of a common model for
HPC applications in which one kernel is responsible for distributing
data to several other kernels, and gathers processed data, when all
kernels are done.

1 #include "HUMboldt.h"
2 #define MAX_ITR 10
3 #define DATA_SIZE 1000
4 #define TAG 0
5
6 int main(int argc , char* argv [])
7 {
8 HUM_Init (&argc ,&argv);
9 int data_array[DATA_SIZE];
10 int size = atoi(argv [1]);
11 int rank = atoi(argv [2]);
12
13 for(int i = 0 ; i < MAX_ITR ; i++){
14 if(rank == 0){
15 for(int r = 1; r < size ; r++)
16 HUM_Send(data_array ,DATA_SIZE ,

MPI_FLOAT ,r,TAG ,MPI_COMM_WORLD);
17 }
18 else{
19 HUM_Recv(data_array ,DATA_SIZE ,MPI_FLOAT

,0,TAG ,MPI_COMM_WORLD);
20 }
21 /* process data*/
22 if(rank == 0){

23 for(int r = 1 ; r < size ; r++)
24 HUM_Recv(data_array ,DATA_SIZE ,

MPI_FLOAT ,r,TAG ,MPI_COMM_WORLD);
25 }
26 else
27 HUM_Send(data_array ,DATA_SIZE ,MPI_FLOAT

,0,TAG ,MPI_COMM_WORLD);
28 }
29 HUM_Finalize ();
30 return 0;
31 }

Listing 1: HUMboldt sample code

The code in Listing 1 needs a few minor modifications to be
synthesizable by Vivado HLS. For example in line 6, instead of
argc and argv to input the size and kernel number (rank) we use
two constant ports. These values are assigned automatically in the
tool flow using the logical description file of the kernels, so there
is no need for lines 10 and 11. Furthermore, some HLS pragmas
should be added just for interfaces that are always the same. These
changes are shown in Listing 2. These modifications can be done
using a very simple script, but essentially, the same code can be run
as software or implemented as hardware in an FPGA. This code
demonstrates that HUMboldt is heterogeneous and functionally
portable for different processing nodes in a cluster.

1 int main(const int size , const int rank)
2 {
3 #pragma HLS INTERFACE ap_ctrl_none port=return
4 #pragma HLS resource core=AXI4Stream variable=

stream_out
5 #pragma HLS resource core=AXI4Stream variable=

stream_in
6 #pragma HLS DATA_PACK variable = stream_out
7 #pragma HLS DATA_PACK variable = stream_in

Listing 2: HUMboldt synthesizable sample code

In addition to the code in Listing 1, cluster description files are
required forGalapagos. Listing 3 is a sample logical file, and Listing 4
is a sample mapping file. Line 5 in Listing 3 shows an example of
the rep field to determine the number of replications of each kernel
within the entire cluster. This shows that how easy it is to have
multiple replications a kernel. The num is an unique identifier of
each kernel that can be used in mapping file.

The logical file in Listing 3 is mostly the same as the original
open-source framework logical file in [4]. However, there are some
small changes that are as follows. There are different naming con-
ventions for the reset and the clock ports in the Vivado environment.
In the modified logical file the user can specify the clock and reset
port names (Line 6 and 7). One feature that makes this complex
heterogeneous system easy to use is that a user is able to debug it by
monitoring some signals. A debug capability has been added to the
system, by which the signals that are marked as debug (Lines 12 and
17 of Listing 3) will be connected to a Xilinx ILA core. The Xilinx
Integrated Logic Analyzer (ILA) IP core[18] is a logic analyzer that
can be used to monitor the internal signals of a design, running
on an FPGA. Another capability that is added to the system inter-
face of Galapagos is defining a constant port that can be assigned
automatically by the tool flow (Lines 19 to 23).

Listing 4 shows how the kernels, which are defined in the logical
file, can be mapped into one or more FPGAs. In lines 20 to 24 it can
be seen that the kernels 1-16 are mapped to a single FPGA. This

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

267

shows how easy it is to scale the system by changing some lines in
the configuration files. The mapping file of the original open-source
framework [4] has the same capability that Galapagos inherited.
However, as mentioned in Section 4.1, the original framework has
the limitation of 16 kernels within the entire cluster, but, Galapagos
has no limitation for the total number of kernels. It has only the
limitation of 16 kernels per FPGA.

Some additional features are added to the mapping file to support
heterogeneity and modularity. For example, in Listing 4 lines 4
and 18 show two different types of nodes (software and hardware),
which addresses heterogeneity and how easy it is to change a kernel
from hardware to software, or vice versa. Furthermore to address
modularity, the user can specify a bridge for their communication
layer as shown in lines 10 to 16. If the user does not specify a bridge,
then it is assumed the kernels will communicate directly via AXI-
stream. Modularity within the network layer can be observed in
line 19, where the user can specify the network protocol (e.g TCP or
Ethernet), and network addresses as demonstrated in lines 6-7 and
25-26. The network addresses would be supplied by the manager
of the data center.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <cluster >
3 <kernel > hardware_core_name
4 <num> 1 </num>
5 <rep> 96 </rep>
6 <clk> aclk </clk>
7 <aresetn > aresetn </aresetn >
8 <id_port > kernel_id </id_port >
9 <interface >
10 <direction > in </direction >
11 <name> stream_in_V </name>
12 <debug/>
13 </interface >
14 <interface >
15 <direction > out </direction >
16 <name> stream_out_V </name>
17 <debug/>
18 </interface >
19 <const>
20 <name> size </name>
21 <val> 4 </val>
22 <width> 16 </width>
23 </const>
24 </kernel >
25 <kernel > cpu
26 <num> 0 </num>
27 <rep> 1 </rep>
28 </kernel >
29 </cluster >

Listing 3: Sample Logical File

1 <?xml version="1.0" encoding="UTF -8"?>
2 <cluster >
3 <node>
4 <type> sw </type>
5 <kernel > 0 </kernel >
6 <mac_addr > ac:c4:7a:88:c0:47 </mac_addr >
7 <ip_addr > 10.1.2.152 </ip_addr >
8 </node>
9 <node>
10 <appBridge >
11 <name> communication_bridge_eth_mpi </

name>
12 <to_app > to_app_V </to_app >
13 <from_app > from_app_V </from_app >
14 <to_net > to_net_V </to_net >
15 <from_net > from_net_V </from_net >
16 </appBridge >

17 <board> adm -8k5 -debug </board>
18 <type> hw </type>
19 <comm> eth </comm>
20 <kernel > 1 </kernel >
21 .
22 .
23 .
24 <kernel > 16 </kernel >
25 <mac_addr > fa:16:3e:55:ca:02 </mac_addr >
26 <ip_addr > 10.1.2.101 </ip_addr >
27 </node>
28 </cluster >
29 ~

Listing 4: Sample Map File

5 TOOL FLOW
To make the Galapagos stack work transparently and conveniently
across a heterogeneous platform, a tool flow is required that takes
the cluster description files (Listing 3 and Listing 4) and HUMboldt
code (Listing 1), and creates the whole cluster automatically. Recall
that one of the goals is to use identical code whether it is to run
as a software kernel or as a hardware kernel. This means that the
tool flow will have two paths, one to create software executables
and the other to build FPGA bitstreams in a user-defined platform.
Figure 10 shows the flows for hardware and software kernels.

Figure 10: Software and Hardware Tool Flow

5.1 Software Kernels
Building software kernels is essentially the same as what is cur-
rently done for standard MPI software distributions. The first step
is to link in the HUMboldt software library to the user code.

5.2 Hardware Kernels
The building of the hardware kernels requires transforming the
original source code into a form that can be used with high-level
synthesis (HLS). HLS essentially creates a block of hardware us-
ing software code. The hardware path of the tool flow gives these
hardware blocks as well as cluster description files to the middle-
ware/Network Layer, and it creates the bitstreams for the FPGAs in
the cluster.

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

268

6 EVALUATION
In this section, the evaluation of our current platform is presented.
We consider the resource utilization, latency and throughput, and
scaling and heterogeneity of our platform.

The testbed that we use to run our test scenarios is a cluster
of servers with Intel Xeon E5-2650 CPUs running at 2.20 GHz,
each with 12 physical cores, so via hyper-threading 24 software
threads can be running. The FPGAs that are located in the same
network of this cluster are Xilinx Kintex UltraScale XCKU115-2-
FLVA1517E devices on Alpha data ADM-PCIE-8K5 boards [19].
All network connections are 10G ethernet connected to a Dell
Networking S4048-ON 10G switch. Our HUMBoldt implementation
is used for any configurations that include a hardware node. To test
the best software to software implementation, we just use MPICH,
which is a mature open-source MPI implementation.

6.1 Resource Utilization of Infrastructure and
Communication Layer

The resource utilization of the different layers of Galapagos in-
cluding the Hypervisor that we got from [4] plus other parts of
the Middleware/Network Layer, including off-chip memory sup-
port that we added, network bridges, communication layer bridges,
and the router within the application region are shown in Table 1.
The percentages, which are shown in brackets, are relative to the
KU115 FPGAs. Observe that the resource utilization of Galapagos
is about 20% when the user chooses TCP, and it is 15% when the
user chooses Ethernet. The resources used here are not necessarily
extra overhead as a developer would require resources to create a
custom multi-FPGA interconnect as well.

Table 1: Resource Utilization of Galapagos

Galapagos Layer LUTs Flip-Flops BRAMs
I) Hypervisor 95332 120367 255

(14.4%) (9.1%) (11.8%)
II) Network Bridge 29146 32582 86
TCP (4.39%) (2.4%) (4.0%)
III) Network Bridge 582 1087 2
Ethernet (0.09%) (0.08%) (0.09%)
IV) Communication Bridge 1039 1585 1
TCP to HUMboldt (0.1%) (0.1%) (0.046%)
V) Communication Bridge 729 1332 1
Ethernet to HUMboldt (0.1%) (0.1%) (0.046%)
VI) Router 5067 6310 1
with 16 ports (0.8%) (0.5%) (0.046%)
Total TCP 130584 160847 343
(I + II + IV + VI) (19.7%) (12.1%) (15.9 %)
Total Ethernet 101710 129096 259
(I + III + V + VI) (15.3%) (9.7%) (12.0%)

The other resource utilization to consider is related to the HUM-
boldt kernels. Each kernel can use any of the functions that are
defined in theHUMboldt communication layer library. Once aHUM-
boldt function is called in the user code, the module for that function
will be added to the hardware of that kernel. Multiple calls to the

same function do not increase the instantiations of the hardware
module. The resource utilization of each function is presented in
Table 2. It can be seen that the current Send and Receive functions
require minimal additional hardware resources.

Table 2: Resource Overhead of HUMBoldt Communication
Layer API Functions

HUMboldt Function LUTs Flip-Flops BRAMs
HUM_Send 389 372 0

(0.06%) (0.03%) (0%)
HUM_Recv 1180 1072 0

(0.18%) (0.08%) (0%)

6.2 Latency and Throughput
We have created a microbenchmark to test the send and receive
functionality of our system, with one kernel sending and another
kernel receiving. We change the implementation of the kernel from
hardware to software and test several configurations. The configu-
rations are as follows: software to hardware, hardware to hardware
(on the same FPGA), hardware to hardware (on different FPGAs),
and hardware to software. These configurations are tested with
both TCP and Ethernet. Furthermore, we test the following soft-
ware configurations withMPICH: software to software (on the same
CPU), and software to software (on different CPUs). MPICH uses
TCP for network communication. We test these using MPICH to
compare the best software implementation of MPI to our HUMboldt
communication layer. The measurements reported were averaged
over many runs until results converged. For MPICH, convergence
required close to a million runs due to OS and other processes
effects whereas our hardware results required about 10 runs.

Figures 11 and 12 show the throughput of our benchmark. Our
HUMboldt communication layer and the respective bridge trans-
forming HUMboldt packets into network packets performs at line-
rate and the effective data throughput is limited by the 10G Ethernet
Core in the Hypervisor along with the respective packet headers
required for TCP and Ethernet (hence the higher throughput in
Ethernet than TCP). For simplicity all our kernels are connected
to the same 156.25 MHz clock, which is the output of the Ethernet
core running at 10G. This limits our internal FPGA throughput
to 10G, however in theory this can be modified for a faster clock.
Furthermore for homogeneity all kernels on the same and different
nodes use the same communication protocol, however this could
be further optimized by simplifying the protocol of kernels on the
same node. Between hardware and software in Figure 11, we cannot
scale past a 128 KB payload after which we notice packet drops
using Ethernet because of the lack of reliability. This is because
the software kernel cannot receive data as fast as the hardware
can send it. Between two hardware kernels, we achieved close to
the maximum TCP core bandwidth that is mentioned in [15]. The
curves show the expected shape where the bandwidth improves
as the payload size, and hardware to hardware works best when
compared to links involving a software node. Note that the curve
for hardware to hardware in the same FPGA is the same in both
Ethernet and TCP cases because the routing is done internal to the
FPGA without needing to add the Ethernet or TCP headers. The

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

269

hardware to software TCP is about half that of software to hard-
ware. This is because the software node cannot process packets as
fast as the packets received from the hardware node, thus dropping
packets and initiating retransmissions.

We do not plot the latency and bandwidth between two software
nodes on the same CPU because they would be difficult to show on
the same graph as the others due to the scaling required and there
is no additional information gained by plotting them on the same
graph. We present these numbers only to illustrate the challenge of
competing with MPI implemented in a shared-memory processor
running at over 2 GHz. MPICH uses shared memory for the commu-
nication, much of which can fit in the cache so the bandwidth can
be very high and the latency very low. The observed bandwidth for
a 512 KB payload is approximately 60 GB/s with a latency of 0.21
µs. It can also be seen that MPICH shows a very high throughput
for small packets and then drops off. We do not understand the
inner workings of MPICH to explain this behavior, but we suspect
optimizations for small packets or possibly cache effects.

The latency is shown in Table 3. We define latency as the time
for sending a zero-payload size transaction, including sending an
envelope, receiving a clear to send, sending a zero-payload packet,
and receiving a done. We measure the cycle counts with a probe
(Xilinx Integrated Logic Analyzer) running on the hardware with
a 156.25 Mhz clock. The latency for two kernels sending and re-
ceiving an entire transaction (all four packets) on the same FPGA
is deterministic and takes 29 cycles. When the receiving kernel is
on another node (different FPGA or CPU) we incur an additional
latency required to transform HUMboldt packets into network pack-
ets. Each packet would be processed through a communication
bridge and a network bridge. These latencies are shown in Table 4.

Table 3: Latency of zero-payload packets

Microbenchmarks Ethernet (µs) TCP (µs)
Hardware to Hardware (same node) 0.2 0.2
Hardware to Hardware (different node) 5.7 15.2
Software to Hardware 27.5 48.8
Hardware to Software 34.7 81.2

Table 4: Per Packet Additional Latency

Component and Protocol Send (cycles) Receive (cycles)
TCP Communication Bridge 9 5
Ethernet Communication Bridge 6 5
TCP Network Bridge 177 199
Ethernet Network Bridge 7 12

On top of the internal FPGA latencies that are mentioned above
there is a non-deterministic latency of the network depending on
the network topology. It can be seen that whenever any communi-
cation uses a network link, the additional cycles for the bridges is
very small except when TCP is used. Also, whenever there is a soft-
ware node involved, it is clear that handling protocols in software
is much slower than in hardware.

As a sanity check of our numbers we can make an approximate
comparison to the latency number measured for Microsoft Cata-
pult [2] where they report an FPGA to FPGA round-trip latency
of 2.88µs when using their LTL communication layer over a 40G
Ethernet link through a single top-of-rack switch. Table 3 shows
that the FPGA to FPGA latency when using the Ethernet network
link (hw to hw diff) on our platform is about 6 µs, which is the
sending and receiving of four packets of 8 bytes according to the
HUMboldt protocol. A single round-trip latency is therefore about
3 µs. On top of Ethernet, Catapult uses UDP frame encapsulation,
IP routing, and adds their LTL protocol [2], which we do not have
with a raw Ethernet link. Catapult is also running at 40G versus
our 10G, so they are sending more bytes at a higher rate. While
the round trip numbers are similar, it can be seen that they are not
directly comparable. However, we argue that our implementation
is within reason compared to Catapult.

Figure 11: Ethernet Throughput.

Figure 12: TCP Throughput.

6.3 Scalability, Heterogeneity and Performance
To test scalability and heterogeneity, we built a simple applica-
tion proxy shown in Listing 1 that is representative of a common

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

270

computing pattern. It has a central node forking tasks to many
processes and gathering the results. The goal of this application
is to exercise our platform and show how easy it is to scale the
application to run with different numbers of nodes. The number
of nodes within our system can scale to the depth of the routing
table, which is currently set to 256 but can be updated as required.
Furthermore, we have a limitation of 16 kernels per FPGA. Within
our experiment we easily implemented several working configu-
rations up to 96 kernels across 6 FPGAs (limited by the number of
FPGAs available in our cluster) by just making a few changes in the
configuration files as described in Section 5. Our experiments have
shown that scaling to 96 kernels is still limited by the network link
and not by our infrastructure. We have scaled our microbenchmark
experiments with 96 kernels across 6 FPGAs and have observed the
same performance between two kernels. Within our experiment,
we also tested heterogeneity by implementing multiple kernels in
hardware and software and demonstrated functional correctness
across a distributed heterogeneous application.

Our experiments have shown that with limited latency over-
head (on the order of up to 200 cycles when TCP is used) and no
throughput overhead we can provide scalability and heterogene-
ity. Furthermore, some latency overhead will be incurred by any
multi-FPGA communication link as some protocol must be in place
to connect the FPGAs together. The small performance overhead of
our abstraction layers means that the upper bound performance of a
multi-FPGA application will not be significantly affected by our ab-
stractions. The true performance of any distributed application will
be dependent mainly on the scalability of the application itself, and
how well the application can map to hardware and not be impacted
by our abstraction layers. Therefore, we limit our experiments to
our microbenchmarking, which strictly tests the underlying com-
munications and our ability to scale without any affects that are
application dependent.

7 CONCLUSION
A heterogeneous deployment stack is necessary to give users flex-
ible heterogeneous clusters at scale. The modularity in our stack,
Galapagos is realized and demonstrated with the creation of the
HUMboldt communication layer on top of multiple implemen-
tations of a networking protocol. This modularity will allow re-
searchers to be able to experiment with different implementations
of heterogeneous clusters. These layers of abstraction work at line-
rate, allowing users to focus on their application. We show that we
can target both heterogeneity and scalability quite easily, as we can
use multiple configurations that we can easily scale by changing
two configuration files. We have also shown that heterogeneity can
be achieved by combining a software and hardware deployment
stack through a common layer, which in our case is the use of a
communication layer such as HUMboldt. This work is open-source
and can be downloaded at https://github.com/tarafdar/galapagos
and https://github.com/eskandarinariman/HUMboldt.

8 FUTURE WORK
We have built Galapagos and HUMboldt to make it easier to build
multi-FPGA and heterogeneous systems. To show the true power

of this infrastructure, we will build some showcase applications
that can leverage such a platform.

The HUMboldt layer currently supports message passing using
a minimal subset of the MPI standard. To more fully support MPI,
more functions need to be implemented, which just adds to the
current library. A fully heterogeneous MPI should leverage existing
software implementations, such as MPICH [16] to achieve the most
efficient implementation of MPI on the software side. This could be
achieved by bridging HUMboldt to MPICH.

To support more types of applications it would be good to add
the streaming communication model to HUMboldt. Because of the
modularity that we added to Galapagos, and the HLS implementa-
tion of HUMboldt, it will not be difficult to add streaming. Just as
we have done by using MPI for message passing, it would be good
to use a popular programming model such as ZeroMQ [9] to define
the interfaces.

In general, since communication is often a bottleneck in multi-
node applications, more work needs to be done to implement ef-
ficient heterogeneous communications. The Galapagos platform
makes it possible to do this exploration without changing the ap-
plication layers so it will be easy to see the impact of different
communication protocols on any applications we build.

REFERENCES
[1] Andrew Putnam et al. A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services. ACM SIGARCH Computer Architecture News, 42(3):13–24,
2014.

[2] Adrian Caulfield et al. Configurable Clouds. IEEE Micro, 37(3):52–61, 2017.
[3] Naif Tarafdar et al. Galapagos: A Full Stack Approach to FPGA Integration in

the Cloud. IEEE Micro, 38(6):18–24, Nov 2018.
[4] Naif Tarafdar et al. Enabling Flexible Network FPGA Clusters in a Heteroge-

neous Cloud Data Center. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 237–246. ACM, 2017.

[5] Naif Tarafdar et al. Heterogeneous Virtualized Network Function Framework
for the Data Center. In Field Programmable Logic and Applications (FPL), 2017
27th International Conference on, pages 1–8. IEEE, 2017.

[6] Henning Schulzrinne et al. Real Time Streaming Protocol (RTSP). Technical
report, 1998.

[7] Iraj Sodagar. The MPEG-Dash standard for multimedia streaming over the
internet. IEEE MultiMedia, (4):62–67, 2011.

[8] Marc Snir. MPI–the Complete Reference: the MPI Core, volume 1. MIT press, 1998.
[9] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. " O’Reilly Media, Inc.",

2013.
[10] Kumar Rakesh et al. Open source solution for cloud computing platform using

OpenStack. International Journal of Computer Science and Mobile Computing,
3(5):89–98, 2014.

[11] Maxeler Technologies. MPC-X Series. https://www.maxeler.com/products/
mpc-xseries, 2015.

[12] Manuel Saldaña et al. MPI as a programming model for high-performance
reconfigurable computers. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 3(4):22, 2010.

[13] Alan D George et al. Novo-G#: Large-scale reconfigurable computing with
direct and programmable interconnects. In High Performance Extreme Computing
Conference (HPEC), 2016 IEEE, pages 1–7. IEEE, 2016.

[14] AXI Xilinx. Reference Guide, UG761 (v13. 1). URL http://www. xilinx. com/sup-
port/documentation/ip documentation/ug761 axi reference guide. pdf, 2011.

[15] D. Sidler et al. Scalable 10Gbps TCP/IP Stack Architecture for Reconfig-
urable Hardware. In 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 36–43, May 2015.

[16] William Gropp et al. A High-Performance, Portable Implementation of the MPI
Message Passing Interface Standard. Parallel Computing, volume=22, number=6,
pages=789–828, year=1996, publisher=Elsevier.

[17] Edgar Gabriel et al. Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, pages 97–104. Springer, 2004.

[18] Product Guide. LogiCORE IP Soft Error Mitigation Controller v3. 3. Xilinx Inc,
2016.

[19] Alpha Data. Alpha Data 8k5 boards. https://www.alpha-data.com/dcp/products.
php?product=adm-pcie-8k5, 2017.

Session 7: Heterogenous Platforms FPGA ’19, February 24–26, 2019, Seaside, CA, USA

271

https://github.com/tarafdar/galapagos
https://github.com/eskandarinariman/HUMboldt
https://www.maxeler.com/products/mpc-xseries
https://www.maxeler.com/products/mpc-xseries
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-8k5
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-8k5

	Abstract
	1 Introduction
	2 Background
	2.1 Hypervisor and Middleware/Network Layer
	2.2 Communication Layer

	3 Related Work
	3.1 Software Deployment Stacks
	3.2 FPGA Cluster Implementations for the Data Center
	3.3 Heterogeneous Communication Layers

	4 Implementation
	4.1 Galapagos Middleware/Networking Layer
	4.2 HUMboldt Communication Layer
	4.3 System Interface

	5 Tool Flow
	5.1 Software Kernels
	5.2 Hardware Kernels

	6 Evaluation
	6.1 Resource Utilization of Infrastructure and Communication Layer
	6.2 Latency and Throughput
	6.3 Scalability, Heterogeneity and Performance

	7 conclusion
	8 Future Work
	References

