Expanding OpenFlow Capabilities with Virtualized
Reconfigurable Hardware

Stuart Byma, Naif Tarafdar, Talia Xu, Hadi Bannazadeh
Alberto Leon-Garcia, Paul Chow
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario, Canada M5S 3G4
{bymastua, tarafda1}@eecg.toronto.edu

{talia.xu, hadi.bannazadeh, alberto.leongarcia}@utoronto.ca, pc@eecg.toronto.edu

ABSTRACT

We present a novel method of using cloud-based virtual-
ized reconfigurable hardware to enhance the functionality
of OpenFlow Software-Defined Networks. OpenFlow is a
capable and popular SDN implementation, but when users
require new or unsupported packet-processing, software pro-
cessing in the OpenFlow controller cannot provide multi-

gigabit rates. Our method sees packet flows redirected through

virtualized hardware with custom-designed packet-processing
engines that can add new capabilities to an OpenFlow net-
work, while retaining line-rate processing. A case study
shows this can be achieved with virtually no loss in through-
put and minimal latency overheads.

Categories and Subject Descriptors
B.0 [Hardware]: General

Keywords
Cloud Computing, Software-Defined Networking

1. INTRODUCTION

Software-Defined Networking (SDN) is a new networking
paradigm that has been gaining popularity in the past few
years [1]. The key to SDN is the separation of the net-
work control plane from the data plane, where the control
of network nodes is moved to a centralized system defined by
software applications. Network nodes become “dumb” pro-
grammable switches that are told what to do with incoming
packets by the central controller that has full view of the en-
tire network topology. This allows network administrators
to write software to achieve extensive fine-grain control over
the entire network.

A problem arises when switches do not implement desired
features in hardware. This can cause packets to traverse a
much slower software path in the switch or through the SDN
controller, which usually runs on a commodity server.

In this paper we introduce a novel method for circum-
venting this slow software path, keeping all desired packet-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

FPGA’15, February 22-24, 2015, Monterey, California, USA.

Copyright © ACM 978-1-4503-3315-3/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684746.2689086.

94

processing in fast hardware datapaths. We leverage exist-
ing work that provides virtualized in-network reconfigurable
hardware accelerators, which can be brought up on the fly
much like virtual machines [2]. We use these accelerators to
implement the desired packet-processing features, and then
redirect packet flows through the accelerators to integrate
their functionality into the network.

2. BACKGROUND

In this section we introduce relevant background material
on OpenFlow, as well as the cloud-based FPGA infrastruc-
ture that we make use of.

2.1 OpenFlow

OpenFlow [3] is a Software-Defined Networking protocol.
OpenFlow operates by programming flows into OpenFlow-
compatible network switches, which match packets against
the flows and perform associated actions such as Forward
or Drop. Current OpenFlow switches generally support a
limited subset of the protocol in hardware. Therefore, a
user operating an OpenFlow network at this point in time
may come across two roadblocks: 1) An OpenFlow switch
does not support a particular optional feature; 2) The user
desires a custom rule match or action that OpenFlow does
not specify.

2.2 Heterogeneous Cloud Infrastructures

Cloud computing is a paradigm in which physical resources
are virtualized so that they can be shared between users in
a flexible, scalable manner.

In this paper we will focus on Infrastructure as a Ser-
vice (IaaS) type clouds. The resources provided in IaaS
clouds are typically Virtual Machines (VM), storage, and
networking resources, a well-known example being Amazon
Web Services. Emerging next generation cloud architectures
also include more heterogeneous computing resources such
as GPUs, and more recently, FPGAs, as well as virtualized
network resources. Figure 1 shows this architecture, compo-
nents of which are described below.

2.2.1 FPGA Resources (VFRs)

FPGASs typically do not map well to existing cloud sys-
tems because there is no straightforward way to abstract
and virtualize them. Recent work, however, has used par-
tial reconfiguration to partition a single FPGA device into
several reconfigurable regions that are then offered as indi-
vidual cloud resources [2]. A provided automated compile
system allows a user to simply write HDL code and have it
run, via the cloud management system, inside one of these
reconfigurable regions, which are termed Virtualized FPGA
Resources or VFRs. From our perspective (the user), we can

Network

I I - . VFR| .- |VFR| (e e "'

| Server |00 ° | Server

\ / FPGA FPGA

Cloud Control & Management

Figure 1:
VFRs.

Cloud infrastructure showing VMs and

view VFRs just as we view virtual machines — part of the
infrastructure used to implement our cloud-based systems.

2.2.2 Network Resources

Our infrastructure contains a networking system that is
also virtualized. This allows us to allocate networks as cloud
resources, and attach other resources to these networks as
well. These networks are also software-defined, and sup-
port the attachment of custom OpenFlow controllers. We
make use of the Smart Applications on Virtual Infrastruc-
ture (SAVI) network Testbed [4] for our prototyping, which
supports this network virtualization, as well as the VFRs
discussed above.

3. PROPOSED METHOD

In this section we describe our method of using virtualized
reconfigurable hardware to expand the functionality of an
OpenFlow network. VFRs are used to implement desired
packet-processing features, while flow redirection is used to
direct packet flows through these VFR-based processors.

3.1 Customizing OpenFlow with VFRs

In a regular, homogeneous IaaS system, customizing an
OpenFlow network would invariably involve software packet-
processing using virtual machines. However, in our infras-

tructure, we can use VFRs to accomplish this packet-processing

at line rate. The hardware can be booted via the cloud
controller, and packet flows can be redirected using the pro-
grammable SDN that connects all resources.

3.1.1 Flow Redirection

We use the term Flow Redirection to describe the process
of moving desired packet flows through a VFR. A VFR can
be seen as a single port Layer Two network device attached
to a specific switch port. Packets need to be sent to the
VFR for processing, and packets coming out of the VFR
also need to be handled correctly. The scenario is shown in
Figure 2. Normally, packets are simply forwarded according
to existing flows in the OpenFlow Switch. In flow redirec-
tion, packets are redirected to the VFR and processed by
custom hardware. Some may be dropped, and some or all
may come back out of the VFR’s single port. Packets exiting
the VFR may also require redirection.

Whatever redirection is required is handled by program-
ming additional flows into the OpenFlow switches, through
the user’s OpenFlow controller. In general, two sets of flows
need to be added — one set redirecting packets into a VFR,
and another set routing packets coming out of a VFR.

This flow redirection adds an additional hop to certain
paths in the network. This will add latency, however through-
put is relatively unaffected, as long as the VFR hardware is
designed well. Compared with full network path latencies,

VM VM VM VM
X] A T
| OpenFlow ! \ OpenFlow !
. 1 \ . 1
\ Switch 1 Switch i
!
< <—$—> . N 4—¢-> 1
___________ ~ /,_

\ J

) 7

]

ALL

VA i

i \\Il i

! 1

Open i VFR |

Flow L /

~<--> Packet Flow Cntrl

Figure 2: OpenFlow can be used to redirect packet
flows through a VFR for additional custom process-
ing.

which are usually in the millisecond range, the additional
latency is comparatively small.

4. APPLICATION CASE STUDY

We present a case study demonstrating our method of
enhancing the functionality of OpenFlow networks using re-
configurable hardware, focusing on the domain of network
tunnels. We show that additional, even exotic funcionality
can be added to an SDN at a low latency cost and negligible
throughput overhead.

4.1 VXLAN

The Virtually eXtensible Local Area Network protocol, or
VXLAN, is a network tunneling protocol that can connect
two local area networks over IP. Entire Ethernet packets are
encapsulated inside IP packets, creating a bridge between
two physically separate Layer 2 networks. VXLAN is an ap-
plication layer protocol, running on top of UDP. OpenFlow
cannot “see” inside the payload of a UDP packet, meaning
that OpenFlow cannot see what kinds of packets are flow-
ing through a VXLAN tunnel. Since VXLAN operates on
a designated port, 4789, an OpenFlow network could detect
that VXLAN tunnels exist, but it is not capable of anything
more than dropping the packets or forwarding them along a
certain route. To “see” inside the tunnel requires extending
OpenFlow to be able to match and perform actions on new
packet fields, which is now possible using flow redirection
and virtualized reconfigurable hardware.

4.2 OpenFlow VXLAN Firewall

A custom, OpenFlow-controlled in-network VXLAN Fire-
wall implements the ability to perform matches and actions
on the IP addresses, and source and destination ports of an
encapsulated packet, and either drop or forward the packet.
A user can control forwarding by sending control packets to
the firewall hardware to configure it at runtime.

Figure 3 shows a high-level view of the firewall design. The
firewall hardware contains two Content Addressable Mem-
ory blocks with a depth of 128 each, which store blacklisted
IP addresses and port numbers. The hardware parses pack-
ets to detect destination UDP port 4789, signifying that the
packet is a VXLAN packet. If this port is not detected,
the packet is simply dropped. The hardware then tests if
the destination transport layer port or the destination IP
address of the encapsulated packet matches any currently
stored in the CAM blocks. If either the port or the IP ad-
dress matches, the packet is dropped. Values are written

into the CAMs via control packets. The firewall hardware
is limited in complexity due to the area constraints of the
current VFRs.

e 'Tl N\

Packet In Mo

IR

VM1
i
[
|

1

1
VXLAN Tunnel ; \ |
Fy]

Figure 3: VXLAN Firewall with CAM blocks

4.2.1 Experimental Results

We set up an experiment to test the firewall as shown in
Figure 2. Two virtual machines are booted on two separate
physical machines along with the VXLAN firewall that has
been compiled for the virtualized hardware system. Flows
are added to the OpenFlow switch connecting these com-
ponents to perform the redirection of packets traversing the
network between the two VMs. The firewall filters the pack-
ets according to the rules programmed into it via control
packets. Packets forwarded out of the firewall are sent on
to their original destination. No modifications need to be
made to the VMs; they operate unaware of what is happen-
ing in the network. The links of network physical layer are
1G Ethernet. The VMs are Ubuntu machines, with 2GB of
RAM and one virtual processor at 1.2 GHz.

The performance utility iperf is used to measure through-
put from one VM to another, and ping is used to measure
latency. First, a baseline measurement is taken, that is with
no additional flows installed, to see what the throughput
and latency are between the VMs without the VFR in the
network path. The iperf utility is run five times and an
average is taken, while ping is run until 20 pings are com-
pleted. These tests are run both with and without VXLAN
tunnelling. Results are shown under No Tunnel and VXLAN
Tunnel in Table 1.

Table 1: Throughput and Latency for VXLAN Fire-
wall

Throughput | Latency

No Tunnel 941 Mb/s | 0.465 ms
VXLAN Tunnel 517.4 Mb/s | 0.532 ms
VXLAN through VFR | 513.2 Mb/s | 0.600 ms

Without tunneling the throughput is near line rate (1
Gb/s) as expected. When tunneling using VXLAN, through-
put takes a large performance hit due to the software imple-
mentation of the tunnel, though the specific loss depends on
the VM specs.

Flows are then installed to reroute VXLAN traffic to the
running VFR and iperf is run again to determine the over-
head of rerouting the VXLAN traffic through the VFR fire-
wall. An average of five runs gives a throughput of 513.2
Mb/s, slightly less than the 517.4 Mb/s achieved without
the VFR in the network path. This is not a large difference
and we can conclude that this technique introduces little

96

to no overhead in terms of throughput. We run the ping
test again, and results show that rerouting to the VFR in-
troduces a small increase in latency (~ 12%), but this is
expected when adding an additional hop. These results are
also summarized in Table 1 under VXLAN through VFR.

4.3 OpenFlow VXLAN Implementation

Our application involves sending a packet between two
machines on two different Local Area Networks. The soft-
ware implementation of encapsulating and decapsulating the
packet through a VXLAN tunnel in OpenVSwitch intro-
duces overhead and reduces our line rate throughput of 941
Mb/s to 517.4 Mb/s (Table 1).

We eliminate this software overhead by implementing the
encapsulation and decapsulation of packets directly in hard-
ware. The system is shown in Figure 4. Flows are set to
forward packets to an encapsulator VFR where they enter
the tunnel (i.e. encapsulated in a VXLAN packet), after
which they are forwarded over the Internet to another VFR,
the decapsulator, which implements the tunnel egress (i.e.
popping the tunneled packet). Control packets are used to
set the header information used by the encapsulator, such
that the VXLAN packets are destined to the decapsulator.
Thus a VXLAN tunnel is created without involving any soft-
ware packet-processing.

Packet
Recipient >

Packet
User
.\d Sender .\- Admin

Encapsulator Decapsulator
L2 Packet 1]
- VXLAN VXLAN Packet ;l
Header

Figure 4: Two hosts on two different LANs commu-
nicating using VXLAN.

4.3.1 Hardware Microarchitecture

The encapsulator takes an L2 packet and encapsulates it
with the entire VXLAN packet header. This packet header
consists of 3 portions: MAC header, IP header, and UDP
header. The MAC header specifies the source and des-
tination MAC address, where the source is the encapsu-
lator VFR and the destination is the decapsulator VFR.
These three packet portions are constant fields that are pro-
grammed into the encapsulator with the use of control pack-
ets. The encapsulator must first be programmed by the use
of three control packets, one specifying each portion of the
VXLAN packet header. After the encapsulator has been
programmed, it can accept general L2 packets for encapsu-
lation, and entry into the tunnel.

The decapsulator receives an encapsulated packet and pops
the original L2 frame/packet. This does not require any ad-
ditional programming via control packets, since the VXLAN
header is a constant size. The hardware does not handle
variable IP options fields. The decapsulator checks to see if
the packet is a VXLAN packet, and if so, strips off the the
header (50 bytes).

4.3.2 Experimental Results

The overhead that a software-based tunnel experiences
can be quite high, as shown in the first experiment. We

set up another experiment to determine if the VFR-based
VXLAN tunnel can indeed alleviate this overhead. We also
wish to see how much latency the additional hops in the
forwarding path add (through the encapsulator and decap-
sulator).

We measure the latency and throughput of the round-
trip path between the initial sender and final destination,
through the encapsulator and decapsulator. All of the nodes
are on the same network. We know from the previous fire-
wall application that one redirection added approximately a
12% latency penalty, and therefore we expect to see a similar
result here.

The ping test is run with the redirection flows installed,
and the resulting round trip latency is 0.509 ms, an increase
of only 9% from the baseline (non-tunneled) latency of 0.465
ms. This is less than the one-hop redirection in the previ-
ous experiment since the latency penalty for the software
VXLAN tunnel is not being paid since the tunnel is now
implemented entirely in custom hardware. Throughput is
nearly unaffected, measured using iperf at 938 Mb/s, only
a 0.3% difference — verifying that flow redirection with VFRs
can nearly eliminate the software overheads of VXLAN tun-
nels in OVS.

S. RELATED WORK

Related work has looked into using FPGAs with Open-
Flow. Some efforts have been made to implement OpenFlow
switches on FPGA-based cards — Naous et. al. have used
the NetFPGA platform [5] and Khan et. al. have used the
NetFPGA10G platform [6]. Their goal was to enable experi-
mental exploration of SDN control and data planes, whereas
the work we present here uses available cloud-based FPGAs
to enhance existing OpenFlow networks with custom func-
tions.

Much work has been done in the area of utilizing FPGAs
to implement custom high-speed packet-processing hardware
as well. Packet classification [7, 8], flow matching [9], and
deep packet inspection [10] are just a few examples. These
approaches may map well into our system to provide these
specialized capabilities and algorithms to an existing Open-
Flow network.

6. FUTURE WORK

One problem this type of system may face is that of us-
ability and adoption — many potential end-users may not
consider it given that it involves complex hardware design.
The key may be to provide a high-level specification or do-
main specific language for describing rules, matches and ac-
tions to execute on packets. Recent work and developments
in this area could be leveraged to provide a friendly, con-
venient way to create hardware engines that will work well
with flow redirection [11, 12]. Libraries of different VFR
compatible hardware engines could be created for use in a
cloud system as well.

There are other applications of our method as well — line-
rate deep packet inspection could be carried out on flows,
with the hardware tailored to detect whatever the user is
looking for. Virtualized hardware could realize the routing
and forwarding protocols for an overlay network, avoiding
the need to implement these nodes on Virtual Machines,
thereby likely enhancing system performance.

7. CONCLUSION

In our view, redirecting packet flows through custom in-
network hardware presents a compelling case. We have
shown that additional, even exotic, functionality can be added
to an OpenFlow Software-Defined Network with little to no
penalty in throughput, in exchange for a small increase in

end to end latency due to the additional hop that flow redi-
rection adds. Recent developments in Domain Specific Lan-
guages and high-level synthesis will also make this approach
to specialized functionality more palatable to the many po-
tential users who do not have a background in digital hard-
ware design.

8. ACKNOWLEDGEMENTS

We would like to thank members of the SAVI testbed
Thomas Lin and Eric Lin for their help in running our exper-
iments. This work was also supported in part by the SAVI
Network, NSERC and Xilinx Inc.

9. REFERENCES

[1] Nick McKeown. Software-Defined Networking.
INFOCOM Keynote Talk, 2009.

[2] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh,
Alberto Leon-Garcia, and Paul Chow. FPGAs in the
Cloud: Booting Virtualized Hardware Accelerators
with OpenStack. In Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2014.

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM
SIGCOMM Computer Communication Review,
38(2):69-74, 2008.

[4] J.M. Kang, H. Bannazadeh, and A. Leon-Garcia.
SAVI Testbed: Control and Management of
Converged Virtual ICT Resources. In International
Symposium on Integrated Network Management, pages
664-667. IEEE, 2013.

[5] Jad Naous, David Erickson, G. Adam Covington,
Guido Appenzeller, and Nick McKeown. Implementing
an OpenFlow Switch on the NetFPGA Platform. In
ACM/IEEFE Symposium on Architectures for
Networking and Communications Systems, pages 1-9.
ACM, 2008.

[6] A Khan and N. Dave. Enabling Hardware Exploration
in Software-Defined Networking: A Flexible, Portable
OpenFlow Switch. In Field- Programmable Custom
Computing Machines (FCCM), pages 145-148, April
2013.

[7] J. Fong, Xiang Wang, Yaxuan Qi, Jun Li, and Weirong
Jiang. ParaSplit: A Scalable Architecture on FPGA
for Terabit Packet Classification. In High- Performance
Interconnects (HOTI), pages 1-8, Aug 2012.

[8] Weirong Jiang and V.K. Prasanna. Scalable Packet
Classification on FPGA. IEEE Transactions on Very
Large Scale Integration Systems, 20(9):1668-1680,
Sept 2012.

[9] Weirong Jiang, V.K. Prasanna, and N. Yamagaki.
Decision Forest: A Scalable Architecture for Flexible
Flow Matching on FPGA. In Field Programmable
Logic and Applications (FPL), pages 394-399, Aug
2010.

[10] Sarang Dharmapurikar, Praveen Krishnamurthy,

T. Sproull, and J. Lockwood. Deep Packet Inspection
Using Parallel Bloom Filters. In High Performance
Interconnects, pages 44-51, Aug 2003.

[11] G. Brebner and Weirong Jiang. High-Speed Packet
Processing using Reconfigurable Computing. /IEEE
Micro, 34(1):8-18, Jan 2014.

[12] Xilinx Inc. Xilinx SDNet. http://www.xilinx.com/
applications/wired-communications/sdnet.html,

2014.

