
Enabling Flexible Network FPGA Clusters in a
Heterogeneous Cloud Data Center

Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh,
Alberto Leon-Garcia, Paul Chow

University of Toronto
{naif.tarafdar, t.lin}@mail.utoronto.ca, efukuda@ece.utoronto.ca,

{hadi.bannazadeh, alberto.leongarcia}@utoronto.ca, pc@eecg.toronto.edu

ABSTRACT
We present a framework for creating network FPGA clusters
in a heterogeneous cloud data center. The FPGA clusters
are created using a logical kernel description describing how
a group of FPGA kernels are to be connected (independent
of which FPGA these kernels are on), and an FPGA map-
ping file. The kernels within a cluster can be replicated
with simple directives within this framework. The FPGAs
can communicate to any other network device in the data
center, including CPUs, GPUs, and IoT devices (such as sen-
sors). This heterogeneous cloud manages these devices with
the use of OpenStack. We observe that our infrastructure is
limited due to the physical infrastructure such as the 1 Gb
Ethernet connection. Our framework however can be ported
to other physical infrastructures. We tested our infrastruc-
ture with a database acceleration application. This appli-
cation was replicated six times across three FPGAs within
our cluster and we observed a throughput increase of six
times as this scaled linearly. Our framework generates the
OpenStack calls needed to reserve the compute devices, cre-
ates the network connections (and retrieve MAC addresses),
generate the bitstreams, programs the devices, and configure
the devices with the appropriate MAC addresses, creating a
ready-to-use network device that can interact with any other
network device in the data center.

1. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have recently

proven to be a good computation alternative in data centers
due to their compute capabilities and power efficiency. One
example is the Microsoft Catapult project where FPGAs are
deployed in the Bing search engine [1]. With a 10% power
increase they are able to see a 95% performance increase.
FPGAs allow users to create customized circuitry for their
application. The performance and power-savings multiply
at a data center scale. Provisioning FPGA resources from a
shared cloud similar to the provisioning of CPUs can be very
useful to allow users to create their own FPGA computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’17, February 22–24, 2017, Monterey, California, USA.
Copyright c© ACM. ISBN 978-1-4503-4354-1/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/3020078.3021742.

clusters. Related works have investigated the provisioning
of a single FPGA tightly coupled with a CPU [2], or the
creation of static FPGA clusters within the data center [3].
The provisioning of scalable and elastic FPGA clusters from
a large general heterogeneous pool of devices has yet to be
investigated, or at least disclosed if it is being done in any
commercial systems.

In this work, our goal is to provide an easy way to or-
chestrate large FPGA clusters for large multi-FPGA and
heterogeneous applications. We want the user to be able to
make a heterogeneous cluster with the ratio of devices (e.g
CPUs to FPGAs) and cluster size they require. We also wish
to make the deployment and deallocation of these clusters
from the cloud quickly, on the order of seconds. Dynamic
cluster topologies will be created using the data center net-
work. Our target is to provide the user an easy framework
for building a large multi-FPGA application. An example
can be a database query application where the query is di-
vided into several sub-queries. Our goal is to provide the
framework for the user to describe the query in terms of
their query processing engines at a logical level, and then
with our framework the user can place these query process-
ing engines on multiple FPGAs and replicate the query many
times.

We abstract away the FPGA connections and present the
user with a large uniform platform that sits on top of a multi-
FPGA backbone. These network FPGA clusters are seen as
any other network device in the data center and with the ap-
propriate network addressing information we can send and
receive data from any other device in the data center (vir-
tual CPU, other FPGA clusters etc.). Using our prototype
system we do a detailed analysis of the whole virtualization
stack: starting from mapping FPGA kernels to devices, us-
ing the cloud management software OpenStack to provision
FPGAs and connect their network ports, map multi-FPGA
topologies onto the network by configuring the FPGAs to
use the appropriate network addresses, and ways to scale up
by replicating nodes and inserting schedulers to communi-
cate with the replicated nodes. Our system abstracts away
the aforementioned stack and produces the cluster based on
a description of the kernels and how they are connected, and
which FPGAs these kernels will map to.

The rest of the paper is as follows: Section 2 will look
into related work in FPGA virtualization and cloud cluster
management tools, Section 3 will describe our data center
resources, Section 4 will explain our design justifications,
Section 5 describe the infrastructure we provide, Section 6
explores scalability of our infrastructure, Section 7 evalu-

ates our infrastructure and lastly we conclude the paper in
Section 8.

2. RELATED WORK
In this section we describe previous work in virtualized

FPGAs and other Cluster Management Tools in the cloud.

2.1 FPGA Virtualization and Clouds
There has been previous academic work providing FPGAs

as virtualized resources within the cloud management tool
OpenStack. The work presented by Byma et al. proposes
FPGA resources sitting directly on the network to be allo-
cated as OpenStack resources [4]. The hypervisor is pro-
grammed into hardware and communicates to the Open-
Stack controller via the network. Furthermore, the FPGA
application region is split into four smaller regions allowing
multiple users to share a single FPGA device. This requires
modifying OpenStack to communicate to the hardware hy-
pervisor in the FPGA.

The work proposed by Chen et al. also virtualizes FPGAs
in OpenStack but does not consider FPGAs sitting directly
on the network [5]. They implement the hypervisor in soft-
ware by modifying KVM, which is a popular Linux hyper-
visor [6]. Instead, the FPGAs are coupled with a virtual
machine. Similar to the previous work, this also requires
modifying OpenStack to communicate to the software hy-
pervisor.

Several industrial pursuits have started investigating pro-
visioning FPGA resources from a cloud. One example is the
Maxeler MPC-X project [7]. This project provides a virtu-
alized FPGA resource to a user that can be implemented
with a variable number of FPGAs. The user first allocates
resources for the given cluster of FPGAs in the virtualized
FPGA resource. Once the cluster has been made, the details
are abstracted from the user during application run-time.

IBM’s SuperVessel looks at providing an FPGA as a PCIe
connected cloud resource with a CPU also provisioned with
OpenStack [2]. In this model a single FPGA is provisioned
to the user as an accelerator to which the user can upload
FPGA code to be run and compiled onto the FPGA. This
simplifies the process of provisioning an FPGA, but only
with a single FPGA.

Microsoft has also continued their work with data cen-
ter FPGAs with the second iteration of Catapult [3]. The
FPGAs are connected directly to a host CPU via a PCIe
link. The output of the host NIC connects to the FPGA
and the FPGA connects to the network through a high-
performance switch. Thus the FPGA has a direct network
connection and the CPU accesses the network through the
FPGA. FPGAs can communicate amongst each other through
a low-overhead custom transport layer. The FPGAs in this
environment are not provisioned as a part of a cloud ser-
vice for external users, and are used internally within the
Mircrosoft data center.

2.2 Cloud Cluster Management Tools
A key aspect of this project is to provide orchestration of

clusters within our cloud environment. Heat [8] is a com-
ponent in OpenStack that can orchestrate clusters using an
orchestration template, which describes the virtual machines
and networking within the desired cluster. This allows the
creation of interesting network topologies within a cluster.
Heat can be combined with user applications that can mod-

ify these clusters using other metrics such as performance,
resource utilization, and CPU usage.

Other tools exist that combine orchestration and load bal-
ancing using the aforementioned metrics. The usual work-
flow for these tools are as follows. The tool first reserves a
set of resources from a larger pool of compute nodes for a
certain application. The allocated resources are then con-
nected for the application and monitoring. The monitoring
is used for user statistics as well as fault tolerance within
the cluster.

These tools are helpful for getting reliable performance on
a cluster as well as debugging a cluster. Debugging a cluster
can be a daunting task as there are many variables within
the cluster. These tools monitor events to gauge the status
of different processes within an application and present the
problem to the user in an easy to understand representation.

Most of these tools currently work for CPU clusters (e.g
Apache Mesos [9]) and GPU clusters (e.g NVidia Manage-
ment Library) [10]. Our challenge is to extend clustering
capabilities to FPGAs by developing our own orchestration
tool and then to investigate monitoring and updating our
clusters using FPGA metrics, which will differ from the cur-
rent set of CPU and GPU metrics current tools use.

3. BACKGROUND
This section describes the infrastructure underlying our

platform, including the SAVI data center and SDAccel FPGA
Programming Platform.

3.1 Smart Applications on Virtualized Infras-
tructure (SAVI) Testbed

The SAVI testbed is a Canada-wide multi-tier heteroge-
neous testbed [11]. Figure 1 shows the architecture of SAVI.
This testbed contains various heterogeneous resources such
as FPGAs, GPUs, Network Processors, IOT sensors and
CPU-based servers. The virtualization of these resources is
one focus of the research on SAVI, where our work focuses
on the use of FPGAs. Resources other than CPUs such as
GPUs and network processors, are provisioned to the user
either by providing the entire server without virtualization
or with the use of PCIe-passthrough.

The multi-tier property refers to the network architecture
of SAVI. SAVI can be seen as multiple cloud networks. The
Core consists of a large number of CPUs that provide the
main compute resources of the data center. The Core is then
connected to several Edges dispersed around Canada. Each
of these Edges is a smaller cloud network that also contains
the heterogeneous devices. Many of these heterogeneous de-
vices are connected directly to the network through high
performance 10 GbE switches. These devices are treated
the same way any CPU would be treated as many of these
devices are assigned network ports with valid MAC and IP
addresses. These devices are addressable by any other node
(CPU or other device) on the network, once they are reg-
istered to the network. This allows, for example, an IoT
sensor in Toronto to send data to an FPGA cluster in Vic-
toria and then have the data be accessible by a CPU cluster
in Calgary. Furthermore the multi-tier architecture allows a
lot of the processing to be done on the Edge network close
to the heterogeneous devices before being sent to the Core
where there are more compute resources.

Figure 1: System diagram of the SAVI multi-tier architec-
ture that has a CORE with many CPU Compute Servers
and Edges physically dispersed around Canada. Each Edge
is made up of compute CPUs and other heterogeneous de-
vices (e.g FPGAs, GPUs, IOT Sensors).

3.1.1 OpenStack
OpenStack is the cloud management tool used by SAVI

[8]. OpenStack is divided into several services. The two
main services that we employ in our platform are Nova and
Neutron, and these services are typically interfaced with a
client machine. Nova is responsible for the deployment of
compute infrastructure from the platform. This involves the
generation of virtual machines on physical machines. The
client machine specifies two fields when requesting a virtual
machine: a software image, and the flavor. The software
image refers to all the software that is to be installed on the
virtual machine, including the operating system and any
other applications that we want initialized on our virtual
machine. These images are typically kept in a repository
and can be updated by users of the testbed. The flavor
refers to the physical specifications of the virtual machine,
such as number the of CPU cores, RAM, and hard drive
space.

Neutron is responsible for the provisioning of network re-
sources. We can create network ports within our cluster,
and these ports are assigned MAC addresses and IP ad-
dresses that will be valid within the cluster. When creating
virtual machines, these ports are created implicitly, but we
can explicitly create additional ports for non-virtual devices
or non-CPU devices.

3.2 FPGA Hypervisor
In our design we use the Xilinx SDAccel [12] platform

as an FPGA hypervisor, where the hypervisor is used to
provide some basic services. The FPGA in this model is
a PCIe-connected device and the platform first provides a
driver to communicate to the FPGA. This is done through
OpenCL, which provides the API to communicate to and
manage devices.

OpenCL is both a programming language for heteroge-
neous devices and a programming API for a host applica-
tion (conventionally run on a CPU) to manage and com-
municate to OpenCL compatible devices [13]. This envi-

ronment gathers all the OpenCL devices connected to the
processor usually locally via PCIe. In the SDAccel Plat-
form, as shown in Figure 2, the OpenCL API communicates
to a driver provided by Xilinx called the Hardware Abstrac-
tion Layer (HAL) that provides driver calls to send/receive
data from the FPGA and program the Application Region,
in the FPGA. The Application Region is programmed us-
ing partial reconfiguration, and the region around the Ap-
plication Region is the Hypervisor in our model. In this
platform the kernels within the Application Region can be
OpenCL kernels, Vivado HLS kernels, or even hand-coded
Verilog/VHDL kernels.

The PCIe Module is a master to a DMA engine to read/write
to off-chip DRAM. This is used to communicate data to the
Application Region. The PCIe Module is also a master to an
ICAP module (not shown) responsible for programming the
Partial Reconfig region with a bitstream sent from the user
in software. The HAL driver provides an API that abstracts
away the addresses required to control the various slaves of
the PCIe master.

Figure 2: System diagram of the SDAccel platform.

For our cluster model we modified this base platform by
adding a 1 GbE Ethernet core. For simplicity we do not use
partial reconfiguration for the Application Region choosing
instead to synthesize the application with the Hypervisor as
a single design. This makes the programming flow simpler
as there is only one bitstream to synthesize. The low-speed
Ethernet core and the absence of a partially reconfigurable
Application Region are limitations of our current modified
version of the platform and will be addressed in the future.

4. DESIGN JUSTIFICATION
Our system looks at the creation of multi-FPGA clusters

from a high-level kernel description. Our system can be
broken down according to the infrastructure stack shown in
Figure 3. We provide a high-level of abstraction where a
user describes logical clusters independent of FPGA map-
pings, and our system provisions the cluster from a pool
of resources accordingly. We take this approach as this is
quite analogous to the modern FPGA system design ap-
proach that can be seen in Xilinx Vivado IP Integrator [14]
or Altera Quartus QSys [15]. These tools are used to con-

nect modules together to create larger systems. Our system
provides a similar design space but the space is across multi-
ple FPGAs. The interfaces between FPGAs are abstracted
from the user, where the user’s logical cluster description
has no notion of which FPGA each user module will map
to. We wish to provide a familiar environment to large sys-
tem designers while providing abstractions to provide ways
to scale to large multi-FPGA designs. Our system also pro-
vides ways to scale up nodes within a cluster by replicating
those nodes, or entire clusters with the use of a directive.

Figure 3: Infrastructure stack, most of this is abstracted
from the user.

The multi-FPGA design cluster is created on the fly from a
pool of resources in SAVI using OpenStack. Our system first
builds single FPGA nodes, and then connects the network
ports on the FPGAs in topologies that are determined from
the logical cluster description the user provides. OpenStack
is used to provision the single FPGA nodes, and to acquire
network ports for the FPGAs in the SAVI data center. We
use OpenStack because this is an open-source cloud manage-
ment tool that is adopted in large data centers such as SAVI.
Our placement in SAVI gives us access to the multi-tier in-
frastructure with the large pool of heterogeneous resources,
which can be used to create large-scale heterogeneous appli-
cations.

5. INFRASTRUCTURE OVERVIEW
In this section we describe our infrastructure by examining

each part of the infrastructure stack. First we will look at
how a single FPGA is provisioned, then we will look at how
clusters are provisioned and scaled.

5.1 Single FPGA Environment
The first step is to be able to provide an FPGA within a

virtual machine. PCIe passthrough gives a virtual machine
full access to a subset of the PCIe devices within a physical
compute node. This can allow us to have multiple virtual
machines on top of the physical machine able to access dif-
ferent PCIe devices. Figure 4 shows two virtual machines
attached to PCIe devices using PCIe passthrough.

In our environment we use the Alpha Data ADM-PCIe-
7V3 cards, which have a Virtex 7 FPGA. On these FPGAs,
the Xilinx SDAccel static bitstream (the bitstream describ-
ing the Hypervisor) is programmed onto the flash memory.
In our environment all the FPGAs are programmed with
the same Hypervisor bitstream as OpenStack running on
the server uses the PCIe Module connection to determine the
type of PCIe-connected device. This PCIe Module might not
be consistent across different FPGA Hypervisors and will
not be recognized as the same device to OpenStack. This

Figure 4: This figure shows PCIe passthrough. Two VMs
have direct access to PCIe devices. The Hypervisor grants
the first virtual machine full access to the first two PCIe
devices and the second virtual machine has the third PCIe
device.

static bitstream includes the PCIe Module that is detected
by the physical compute node, and then registered with
OpenStack Nova by including it in its PCIe passthrough
White-List, which specifies the devices that can be attached
to virtual machines.

The last step for the setup is the creation of a new Flavor,
which defines a set of specifications for virtual machines.
A Flavor can specify the type of PCIe device as well as
the number of PCIe devices of that specific type (e.g there
can be Flavors for for one FPGA, two FPGAs, one GPU,
two GPUs etc.). In addition to PCIe devices, a Flavor also
defines other machine specifications such as memory size and
hard-disk space. Once these Flavors are created, they can
be used to create multiple virtual machines described by the
specifications of the Flavor.

We have been using this environment to provide an SDAc-
cel service since Fall 2015, before IBM started to offer it in
April 2016. We have Flavors that have simulated FPGAs
and physical FPGAs.

5.2 Multi-FPGA Infrastructure
Our infrastructure provides a cluster of network-connected

FPGAs to the user given a description of what a cluster of
kernels will look like. The user provides a logical description
of their desired FPGA cluster that describes how different
FPGA kernels are to be connected together. The user also
provides an FPGA mapping that specifies the number of
FPGAs the user requires and places the kernels on the ap-
propriate FPGAs. Kernel connections within a single FPGA
are simple as they are directly connected, whereas kernel
connections between FPGAs are implemented via the net-
work. Furthermore kernels may also fan out to schedulers
instead of directly connecting to other kernels.

5.2.1 Logical View of Kernels
The kernels in this system are streaming kernels and they

use the AXI stream protocol for input and output. The AXI
stream interface our system uses has the following fields: A
32-bit data field, 8-bit dest field, a 1-bit last field, a 1-bit
ready field and a 1-bit valid field.

All kernel inputs to the system are addressed by a specific
dest entry. Logically speaking, unless otherwise stated, any
kernel output can connect to any input. This can be seen as
all kernels being connected to a large logical switch. These
kernels may be mapped to the same FPGA or to different

FPGAs. Furthermore these kernels can be replicated with
directives in the input scripts and they can be scheduled in
different ways with the use of schedulers.

Figure 5: This highlights the simple logical view of a kernel
cluster. In this situation all the kernels output to a switch
and their inputs come from the switch.

Sub-Clusters

In Figure 5 we show three kernels connected via one logi-
cal switch. All kernels are connected to each other in a fully
connected network. Edges can be removed if we directly
connect kernels. Figure 6 shows four kernels with direct
connections between some of the kernels. Such sub-clusters
are then connected to the logical switch.

Figure 6: This is an example of a directly connected sub-
cluster that would be connected to the logical switch.

We can also have our own schedulers where the output of a
kernel might not be connected to all the other kernel inputs
but to a subset of kernel inputs arbitrated by a scheduler.
This type of sub-cluster is shown in Figure 7 and explained
in more detail in Section 6.1.

Figure 7: This is an example of a sub-cluster where a kernel
is connected to a local scheduler that arbitrates between 3
kernels within the sub-cluster.

5.2.2 Physical Mapping of the Kernels
Each kernel in the logical topology is mapped to a physical

FPGA. More than one kernel can be mapped to an FPGA.
Direct kernel connections on the same FPGA are simply
connected within the FPGA. Kernels with connections that
cross an FPGA boundary are wrapped with logic to help
with the crossing.

When connections on the large logical switch are divided
across multiple FPGAs, the logical switch is implemented
as physical switches on each of the FPGAs. Figure 5 shows
three kernels fully connected with a logical switch. Now
let’s consider the following scenario: Kernels A and B are
on FPGA 1 and Kernel C is on FPGA 2. The physical
mapping is shown in Figure 8.

Figure 8: This figure translates the logical cluster shown
in Figure 5 into a physical cluster with two FPGAs.

Figure 8 shows the logical switch split into two physical
switches. The inputs to the respective kernels on the two
FPGAs always come from the physical switch on the FPGA.
The first FPGA sends all packets addressed to Kernel C to
the switch in the second FPGA. Furthermore the second
FPGA’s switch sends all packets dedicated for Kernels A
and B to the first FPGA. The output of each of the kernels
feed into the physical switch on that FPGA. The physical
switch can determine the destination FPGA of each packet.

For edges between kernels that are not connected to the
large logical switch (sub-clusters), the direct connections
must also be facilitated between FPGAs.

5.2.3 FPGA Application Region
The FPGA Application region includes helper modules

for the User Kernel to interface directly with the network
through the Ethernet interface. The helper modules are re-
sponsible for filtering packets, formatting packets and ar-
bitrating for the network port. The Application Region is
shown in Figure 9.

The configuration bus is used to configure the input and
the output modules. These signals are driven by the PCIe
Module on the FPGA, which receives signals from the PCIe-
connected virtual CPU.

Input Module

All the packets that the FPGA receives via the Ethernet
are forwarded to the input module. The packets that are
received at the network port follow the Ethernet packet
convention with a 14-byte header. On top of this we add
our own protocol by appending two bytes (Kernel Address)
to specify the destination kernel for the packet, as we may
have multiple kernels on the FPGA that are requesting input
packets.

Figure 10 shows the protocol details used by our FPGA
infrastructure. Each FPGA in our infrastructure is assigned
a MAC address within the SAVI infrastructure. The process

Figure 9: This figure shows the details of the Application
Region. The input and output modules are both configured
by the configuration bus.

Figure 10: The Ethernet protocol plus our custom protocol
to differentiate the kernel.

by which we get the MAC address is discussed in Section 6.2.
The destination MAC address should match the MAC ad-
dress assigned to the particular FPGA. The source MAC
address will be the source MAC address of the FPGA or of
the virtual machine within SAVI that is sending the FPGA
data. The next two bytes, according to the Ethernet frame
protocol, are the ether-type that we hardcoded to 0x7400,
and the last field is the address of the kernel within the
FPGA.

The Input Module consists of an Input Bridge and an In-
put Demultiplexer. The Input Bridge is configured after the
FPGA is programmed with the bitstream and before the
application can run. The Input Bridge behaves as both a
firewall and converts a packet from an Ethernet Packet into
an AXI Stream packet. The Input Bridge’s firewall is con-
figured with the MAC address assigned to the FPGA. The
Input Bridge also drops the Ethernet header and adds a dest
field as part of the AXI stream. The dest field corresponds
to the Kernel Address specified within the header. This In-
put Demultiplexer either outputs to kernels on this FPGA
that are expecting Ethernet input, or it outputs to kernels
on a different FPGA; in this case all packets matching the
corresponding dest field will be sent straight to the output
module. The input to the switch comes from both the Eth-
ernet module and all other user kernels that can output to
any other kernel on the FPGA. An example of an Input
Module is shown in Figure 11. For details refer to Section
5.2.2.

Output Module
This module receives streams from the User Kernels and

from the Input Demultiplexer. The Output Module consists
of Packet Formatters (PF) and an Output Switch. Each
stream (either from the User Kernels or from the Input Mod-
ule) needs a Packet Formatter before it can be sent out to
the network. Each stream is formatted with the appropri-
ate MAC headers. The source MAC address is that of the
FPGA. The destination MAC address is of the destination
FPGA or virtual machine. The ether-type is 0x7400 as it
was in the input stream and then we append the dest of the

Figure 11: The input module consisting of the Input
Bridge (labelled IB) and the Input Demultiplexer (labelled
ID). In this example the dest fields 0x2, 0x3 feed into differ-
ent User Kernels on this FPGA and 0x4 feeds into another
FPGA by going through the Output Module.

stream into the header of the packet. All the Packet For-
matters are fed into an output-switch that arbitrates using
the last field of the AXI stream. The output switch uses
a round-robin scheduling algorithm. The output module is
shown in Figure 12. The input to the Packet Formatter is
an AXI stream with a dest field. The formatter uses the
dest field as the kernel address when it is outputting to the
network.

Figure 12: The output module for two streams consist-
ing of Packet Formatters (labelled PF) for each stream that
needs to be output.

6. SCALING UP FPGA CLUSTERS
A major feature of our infrastructure is the ability to scale

the cluster. We can treat a whole cluster as a single pro-
cessing unit and it can be replicated with a single directive
within the script. For example, Figures 5 and 8 show a log-
ical mapping transformed into a physical mapping without
any replication. If this was to be replicated three times there
would be a total of six FPGAs. The original FPGA mapping
file listed only two FPGAs but six FPGA MAC addresses
would be returned to the user.

6.1 FPGA Schedulers
Nodes within the cluster can be replicated as well with-

out replicating the entire cluster. Replicating a node within
the cluster will require all nodes that fan-in to that specific
node to now include a Scheduler. The Schedulers currently
support any-cast, which uses a round-robin scheduler, or
broadcast. Figure 13 shows how a node is replicated within
a cluster and where a Scheduler is inserted.

The Schedulers are also FPGA kernels. If the replicated
kernels span across multiple FPGAs the scheduler will be
placed on the FPGA with the most replications of that ker-

Figure 13: This shows the replication of Node 2. The repli-
cated nodes are Node 2 1, Node 2 2 and Node 2 3. Node 1
has a Scheduler that fans out to the replicated nodes.

nel to reduce latency for the more common case. For exam-
ple, in Figure 13, if two of three replications are on FPGA 1,
and the other is on FPGA 2, then the script will place the
Scheduler on FPGA 1. The script will then create connec-
tions from the Scheduler to the replicated nodes and one
connection to the Output Module on FPGA 1. The remain-
ing replicated kernel will be connected to the Input Module
on FPGA 2. Figure 14 illustrates this scenario.

Figure 14: The physical configuration if Node 1, Node 2 1
and Node 2 2 are on FPGA 1 and Node 2 3 is on FPGA 2.

6.2 FPGA Software Drivers and Network Con-
nections

Each virtual machine with an FPGA is responsible for
sending control signals to the FPGA. These control signals
are to configure the Input Module and the Output Module
with the appropriate MAC addresses. We choose to use the
software to configure the Input and Output Modules because
the alternative is to encode the MAC addresses in hardware,
which will require resynthesizing FPGA bitstreams for dif-
ferent physical FPGAs when replicating the cluster. Our
approach allows us the option to generate our cluster with
one set of FPGAs and then replicate the clusters with the
same bitstreams to more FPGAs.

The software drivers can configure the Input Bridge and
the Packet Formatters in the hardware because the PCIe
module in the hardware is a master (a driver of signals) to
these modules. This means that writing to a certain address
on the PCIe module can be used to send data to the Input

Bridge or the Packet Formatter. We can write to different
addresses of the PCIe module with the HAL driver that was
provided in the SDAccel tool kit. When a virtual machine
with an FPGA is booted, the software driver is accepting bit-
streams. Once a bitstream is received it will be programmed
with the HAL and the Input Bridge and Packet Formatters
will also be configured by the HAL. Our justification to pro-
vide the Packet Formatters as software configurable blocks
is due to scalability. If we wish to scale up our cluster with
more network FPGAs, the MAC address of each FPGA can
be configured by software instead of synthesizing bitstreams
on a per FPGA level.

Each FPGA obtains a network connection by first receiv-
ing a network port from the OpenStack service, Neutron.
Each network port consists of a MAC address, and IP ad-
dress. This port is then registered with the physical port
on the network switch that has the FPGA connection. Our
scripts can determine the physical switch port of a partic-
ular FPGA connection by observing which physical server
hosts the virtual machine containing the PCIe server. In our
setup we have one FPGA per physical server. If this were to
change we would need a new mechanism to infer the physical
network port of a particular FPGA. Once the port returned
by Neutron is registered with the physical port, it is now
accessible on the network from any other device in the SAVI
data center, including other virtual CPUs, IoT devices and
FPGA clusters.

6.3 Tool Flow
We summarize the use of our system by describing the

tool flow. First the user submits a logical cluster description
and FPGA mapping file to a global FPGA parser. Eventu-
ally, these could be generated by a higher-level framework
or application. OpenStack calls are generated to create vir-
tual machines, which are light-weight CPU virtual machines
connected to an FPGA, and one virtual machine dedicated
to synthesize bitstreams. Subsequent OpenStack calls are
generated to create network ports, each with valid MAC
and IP addresses. These ports are registered with the SAVI
switch and now all packets sent to these addresses will be
forwarded to the right switch port. After all the OpenStack
calls are generated, the individual FPGAs are synthesized
on the large virtual machine dedicated to synthesizing bit-
streams. Once the bitstreams are synthesized they are for-
warded to the individual FPGAs to be programmed onto the
FPGA. Once programmed, the Packet Formatters are con-
figured by the FPGA software driver running on the light-
weight CPU attached to the FPGA via PCIe. After the
user submits the initial cluster description files, the rest of
the calls are automatically generated by our infrastructure.

7. EVALUATION
This section first examines the overhead of the infrastruc-

ture our design introduces and compares it to the SDAccel
platform. This will quantify the overhead we introduce to
support our multi-FPGA cluster. Then we test the latency
and throughput of the input and output modules using a
set of microbenchmarks. Finally, we test a full application
using a database acceleration application. The designs are
implemented on the Alpha Data 7V3 card, which has the fol-
lowing specifications: a Xilinx Virtex 7 XC7VX690TFFG-
1157 FPGA (433200 LUTs, 866400 Flip Flops, 1470 BRAM
Tiles), two 8GB ECC-SODIMM for memory speeds up to

1333MT/s and Dual SFP+ cages for high speed optical com-
munication including 10 Gigabit Ethernet.

Our network infrastructure connects the 10 GbE SFP
ports using 10 GbE to 1 GbE transceivers to a network
switch. The switch can support 10 GbE links, but due to
the 1 GbE FPGA core that is in our FPGA Hypervisor we
have to use a 1 GbE cable. The goal of the evaluation is
to demonstrate that our FPGA network modules add little
overhead with respect to throughput and very little latency
overhead. The absolute latency and throughput numbers
are limited by the 1 GbE network connection but the infras-
tructure we have built can be used on 10 GbE, or better,
systems where we would expect these numbers to be better.
We also wish to highlight the scalability of our infrastructure
with a case study, demonstrating that by simply changing
a directive in the script, our clusters can replicate with the
throughput scaling accordingly.

7.1 Resource Overhead
The resource overhead from our infrastructure is shown in

Table 1. Absolute numbers are given with the percentage of
the device total shown in brackets.

Table 1: Resource Overhead of our System

Hardware Setup LUTS Flip-Flops BRAM

SDAccel Base 53346 64550 228
(12.3 %) (7.45 %) (15.5 %)

SDAccel Base with 62344 76124 228
Ethernet Support (14.4 %) (8.79 %) (15.5 %)

Input Module
Input Bridge 87 170 2

(0.02 %) (0.019 %) (1.36 %)
Input Demultiplexer 82 124 0
with 16 outputs (0.019 %) (0.014 %) (0 %)

Output Module
Ethernet FIFO 26 12 2
Controller (0.006 %) (0.014 %) (1.36 %)
Output Switch 517 138 0
with 16 inputs (0.119 %) (0.016 %) (0 %)
Packet Formatter 230 252 2
(one per network (0.053 %) (0.029 %) (1.36 %)
output stream)

Total Available 433200 866400 1470

The SDAccel Base refers to the standard SDAccel envi-
ronment that has no network connection for the FPGA. The
SDAccel Base with Ethernet Support includes a 1 Gb Eth-
ernet port. We can see that the addition of the Ethernet
port requires only 2.1% of the resources of the whole de-
vice. The Input Module is divided into a Input Bridge and
the Input Demultiplexer. The size of the Input Bridge is
independent of the number of network input streams. The
size of the Input Demultiplexer is dependent on the number
of streams. Table 1 shows the overhead corresponding to a
16-port switch. The Output Module is divided into the Eth-
ernet FIFO Controller, the Output Switch and the Packet
Formatter. The Ethernet FIFO Controller overhead is in-
dependent of the number of output streams. The Output
Switch size, analagous to the Input Demultiplexer size, is
dependent on the number of output streams. The number
of Packet Formatters we have on our FPGA is dependent

on the number of output streams. It can be seen that the
resource usage of the Input Bridge, Input and Output Mod-
ules and Packet Formatter is small relative to the device and
not significant in terms of resources.

7.2 Microbenchmarks
Our microbenchmarks consist of an application that is a

direct connection between the Input Module and the Output
Module of an Application Region. The goal of this is to
show the overhead of our Input and Output Modules and to
show that they can handle packets at line-rate as all of the
modules are of single-cycle latency.

7.3 Microbenchmark Setup
For Microbenchmark 0 the CPU is directly connected to

the FPGA. The CPU sends packets to the raw network inter-
face and the FPGA echoes them back. The packets traverse
through the Input Module, the Application Region FIFO
and exit through the Output Module back into the CPU.
The CPU for this data-point is not a virtual machine and
the specifications of it are as follows: Intel Xeon 3.5 GHz
CPU E5-2637, four cores with hyperthreading, 32 GB RAM.

(a) Microbenchmark 0 is a

CPU directly connected to

an FPGA (not through net-

work switch).

(b) Microbenchmark 1 is a

CPU connected with a net-

work switch to an FPGA

Chain of length 1.

(c) Microbenchmark 2 is a CPU connected

with a network switch to an FPGA Chain of

length 2.

(d) Microbenchmark 3 is a CPU connected with a network

switch to an FPGA Chain of length 3.

Figure 15: Microbenchmarks 1 to 3 have a network hop
(NH). Each network hop travels to the network switch con-
nected to all the FPGAs. Microbenchmark 0 does not use
a virtualized CPU, where as the others use virtual CPUs
provisioned in SAVI.

This is compared to three microbenchmarks using SAVI.
These microbenchmarks consists of one virtual machine send-
ing data to a chain of FPGAs. The chain of FPGAs is either
a single FPGA, two FPGAs, or three FPGAs. The traversal
through the FPGA chain requires packets to travel to the
network switch to be routed. Figure 15 shows the setup of
the four microbenchmarks. The specifications of the virtual
machine sending data to the FPGA chain are as follows:
QEMU Virtual CPU 2.0 GHz, two cores, 4 GB RAM.

7.3.1 Latency
The round-trip latencies are shown in Figure 16. There

is no switch latency and no virtualization overhead for Mi-
crobenchmark 0. However after that point we notice a linear

progression as we increase FPGAs. Each extra FPGA on the
path requires two trips to the switch.

Figure 16: Round-trip Latency of the four microbench-
marks.

7.3.2 Throughput
Figure 17 shows the throughput for the different microbench-

marks. The red line is the bandwidth limit of the network
cable. The throughputs of Microbenchmark 0 to 3 are mea-
sured with the iperf tool [16]. This is a network tool used to
measure throughput of network connections. Microbench-
mark 0 does much better because of the faster CPU as it
approaches the theoretical maximum of 1 GB/s, which is
the current speed of the Ethernet module in the SDAccel
framework. When we look at Microbenchmarks 1 to 3, as
expected the throughput remains consistent as more FPGAs
are added to the chain. Figure 17 shows two additional data
points. The first is the throughput between two virtual ma-
chines in the SAVI network (Microbenchmark 4). The sec-
ond additional Microbenchmark is the calculated through-
put within the FPGA (Microbenchmark 5). The internal
FPGA bandwidth shows that the bottleneck observed is not
within the FPGA but due to the virtual machine feeding
the FPGA. The internal FPGA throughput is calculated by
using the bus width, which is 4-bytes wide and multiplying
that by the clock speed, which is 125 MHz. The network
switch is designed to switch at 40G rates and therefore is
not the bottleneck of our system.

Both the Input and Output Modules work with single-
cycle latency. The Input Module needs a four-cycle warm-up
period before it bursts the rest of the packet and the Output
Module requires a five-cycle warm-up period. These warm-
up periods are accommodated with additional FIFOs, which
adds to the latency but does not affect the throughput.

Figure 17: Throughput of the four microbenchmarks with
two additional datapoints.

7.4 Application Case-study
Our application case study is a database query accelera-

tor. Several works, such as [17] have shown FPGAs are a
good target for such applications as they can perform low-
latency, high-throughput applications. Furthermore, frame-
works such as Apache Drill have shown that distributed clus-
ters are a good way to accelerate database services [18]. The
combination of those observations suggest that a distributed
FPGA cluster is ideal for a database query accelerator.

The application we have built is a naive implementation of
a query. The query is broken down into several sub-queries.
Even though it is a naive implementation, the purpose of the
infrastructure is to show that laying out the circuit is easy,
and so is replication of that circuit (changing one number in
the logical cluster file).

7.5 Query Implementation Details
The query is composed of five streaming components con-

nected as a chain:

1. SQL Read: This component is responsible for reading
SQL columns and outputting the data in a format that
enables the rest of the components to process the data.

2. SQL Where: This operation is used to match column
predicates and values with respect to a boolean oper-
ation (equal, greater than, less than, etc.)

3. SQL Like: This operation is used on a string column
data and is used to match a string using a substring.

4. SQL Group: This operation aggregates different records
using a grouping operation, such as counting.

5. SQL Write: This component is responsible for separat-
ing the stream coming out of SQL Group into columns.

Our infrastructure allows us to easily replicate the number
of query processing engines, even across multiple FPGAs.
When considering the number of processing engines, we first
observe the resource usage of one replication of this process-
ing engine, which is as follows: LUTs 11567 (2.7 %), Flip
Flops 17176 (1.9 %), Block RAM 504 (34.3 %).

The Block RAM utilization limits our replication so we
are limited to two query processing engines per FPGA (each
query processing engine requires 35 % of the available BRAM).
In our logical FPGA cluster file we would specify this as six
replications and in our FPGA mapping we would divide the
kernel nodes onto three FPGAs. We do the replication with
a scheduler. The scheduler is located on one FPGA and for-
wards the data to either the replicated engines on the same
FPGA or to another FPGA. This would send all the data to
one destination and then the scheduler would be responsible
for forwarding the data to the appropriate query process-
ing engine. The first FPGA has a scheduler connected to
two replicated query processing engines. The second and
third FPGAs also have two replicated query processing en-
gines connected directly to the Input Module as opposed to
a Scheduler. The Scheduler on the first FPGA is responsi-
ble for scheduling work to all six replicated query processing
engines across three FPGAs. This makes it simpler for the
user since they do not have to change their interface to the
cluster as they change the number of replications.

7.6 Case Study Evaluation
Our evaluation compares the throughput of one replica-

tion versus six replications across three FPGAs. As expected
Figure 18 shows that the throughput increases as the replica-
tions increase and we expect it to continue to increase until
it reaches the maximum of the FPGA chains observed earlier
at about 240 MB/s. This example also highlights the scala-
bility of our system. This would be at about 12 replications,
which would require six FPGAs. The throughput limit of
240 MB/s is due to the speed of the CPU inputting table
data into the FPGA chain. With a faster CPU we could
theoretically saturate the network cable throughput limit of
1 GB/s, which can be increased with a faster network.

Figure 18: The throughput as we scale up the number of
query processing engines.

8. CONCLUSION AND FUTURE WORK
The use of FPGA clusters can be useful as projects like

the Microsoft Catapult project have shown. Our infrastruc-
ture provides a lightweight cluster provisioning tool. This
tool, with a logical cluster description and FPGA mapping,
can generate scalable clusters from a heterogeneous cloud.
Moreover, these clusters are connected to the network as
network devices ready to interact with other network de-
vices. Our infrastructure makes it easy to scale up as with
a simple directive we saw throughput scale almost linearly
from one to six replicated processing units in our database
case study.

The performance limitations in our experiments are due
to the limits of our networking infrastructure. One area of
future work is to address the slow 1 Gb Ethernet links by
upgrading the Ethernet core. Our cluster example remains
small but we also wish to upgrade our physical infrastructure
to many more nodes so that we can demonstrate a large scale
application. Our current case study application is limited
due to the number of FPGAs available.

Another area of future work is to build true virtualization
on top of this infrastructure. This can involve automatic
placement of these kernels so the user will no longer provide
an FPGA mapping, or the concept of making a large vir-
tual FPGA out of an FPGA cluster. In both scenarios the
cluster details are hidden from the user. Our infrastruture
provides simple provisioning of FPGA clusters and can be
the platform for using FPGA virtualization.

9. ACKNOWLEDGEMENTS
The authors would like to thank the SAVI testbed for

providing the infrastructure, as well as NSERC, SAVI, Xil-

inx, and CMC/emSYSCAN for providing the equipment and
funding for this project.

10. REFERENCES
[1] Andrew Putnum et al. A Reconfigurable Fabric for

Accelerating Large-scale Datacenter Services. In
Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on, pages 13–24. IEEE, 2014.

[2] IBM Research. OpenPOWER Cloud: Accelerating
Cloud Computing. https://www.research.ibm.com/
labs/china/supervessel.html, 2016.

[3] Adrian Caulfield et al. A Cloud-Scale Acceleration
Architecture. In Proceedings of the 49th Annual
IEEE/ACM International Symposium on
Microarchitecture, October 2016.

[4] Stuart Byma et al. FPGAs in the Cloud: Booting
Virtualized Hardware Accelerators with OpenStack. In
Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2014.

[5] Fei Chen et al. Enabling FPGAS in the Cloud. In
Computing Frontiers, 2014.

[6] KVM. Kernel Virtual Machine.
http://www.linux-kvm.org, 2015.

[7] Maxeler Technologies. MPC-X Series.
https://www.maxeler.com/products/mpc-xseries,
2015.

[8] Omar Sefraoui et al. OpenStack: toward an
open-source solution for cloud computing. In
International Journal of Computer Applications, 2012.

[9] Apache Software Foundation. Apache Mesos.
https://mesos.apache.org, 2015.

[10] NVidia Inc. NVidia Cuda Zone, Cluster Management
Library. https:
//developer.nvidia.com/cluster-management, 2015.

[11] Joon-Myung Kang et al. SAVI Testbed: Control and
Management of Converged Virtual ICT Resources. In
IFIP/IEEE International Symposium on Integrated
Network Management, pages 664–667. IEEE, 2013.

[12] Xilinx Inc. SDAccel Development Environment.
https://www.xilinx.com/products/design-tools/

software-zone/sdaccel.html, 2016.

[13] The Khronos Group. OpenCL Standard.
https://www.khronos.org/opencl/, 2015.

[14] Xilinx Inc. Accelerating Integration.
http://www.xilinx.com/products/design-tools/

vivado/integration.html, 2016.

[15] Altera Corporation. Qsys - Altera’s System
Integration Tool. https://www.altera.com/
products/design-software/fpga-design/

quartus-prime/features/qts-qsys.html, 2016.

[16] Iperf. Iperf – The TCP/UDP Bandwidth
Measurement Tool. https://iperf.fr, 2014.

[17] Christopher Dennl et al. Acceleration of SQL
Restrictions and Aggregations through FPGA-Based
Dynamic Partial Reconfiguration. In Field
Programmable Custom Computing Machines (FCCM),
pages 25–28, 2013.

[18] Apache Software Foundation. Apache Drill.
https://drill.apache.org/, 2015.

https://www.research.ibm.com/labs/china/supervessel.html
https://www.research.ibm.com/labs/china/supervessel.html
http://www.linux-kvm.org
https://www.maxeler.com/products/mpc-xseries
https://mesos.apache.org
https://developer.nvidia.com/cluster-management
https://developer.nvidia.com/cluster-management
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.khronos.org/opencl/
http://www.xilinx.com/products/design-tools/vivado/integration.html
http://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://iperf.fr
https://drill.apache.org/

	Introduction
	Related Work
	FPGA Virtualization and Clouds
	Cloud Cluster Management Tools

	Background
	Smart Applications on Virtualized Infrastructure (SAVI) Testbed
	OpenStack

	FPGA Hypervisor

	Design Justification
	Infrastructure Overview
	Single FPGA Environment
	Multi-FPGA Infrastructure
	Logical View of Kernels
	Physical Mapping of the Kernels
	FPGA Application Region

	Scaling up FPGA Clusters
	FPGA Schedulers
	FPGA Software Drivers and Network Connections
	Tool Flow

	Evaluation
	Resource Overhead
	Microbenchmarks
	Microbenchmark Setup
	Latency
	Throughput

	Application Case-study
	Query Implementation Details
	Case Study Evaluation

	Conclusion and Future Work
	Acknowledgements
	References

