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Abstract—We present a framework for creating heterogeneous
virtualized network function (VNF) service chains from cloud
data center resources. Traditionally, these functions are packaged
in software images within a catalog of networking applications
that can be loaded onto a virtual machine CPU, and can be
offered to users as a service. Our framework combines the best
of both software and hardware by allowing users to chain tradi-
tional software-based VNFs with hardware-based VNFs that the
user provides as an IP to generate a bitstream or a pre-generated
VNF as part of a library. To accomplish this, our framework
first creates the hardware bitstreams and programs the FPGA
VNFs, loads any software VNFs requested, and programs the
network to daisy chain the VNFs together. Furthermore, this
enables an incremental design flow where the user can start by
implementing a chain of VNFs in software and incrementally
substitute software VNFs for their hardware counterparts. Our
paper investigates two case studies to show the ability to switch
between hardware and software VNFs in our framework and
to demonstrate the benefit of using hardware VNFs. The first
study is signature matching at fixed offsets, similar to matching
packet headers. In this case study, the CPU can keep up at line-
rate using specialized networking drivers. The second case study
involves string matching within a packet, which requires scanning
through the entire frame. In this case, the CPU performance
drops to approximately 20 percent of the input rate, whereas the
FPGA can continue to keep up at line-rate.

I. INTRODUCTION

A cloud infrastructure network can be seen as a large

collection of shared resources, which are provisioned to users

by multiplexing them in time and space. This provisioning

is known as Infrastructure as a Service (IaaS), where users

can build large computing infrastructures without the capi-

tal investment of purchasing physical clusters of computing,

networking, and storage devices. The sharing of the compu-

tational resources is done through virtualization, in which a

layer of abstraction hides the physical details of the shared re-

sources from the user. These physical details include the actual

physical location of the resource, its physical specifications, as

well as the presence of other users sharing the same resource,

thus giving the illusion of a complete physical resource to

the user. The privacy, performance, and other complications

that arise due to the sharing of devices are popular areas

of research. Current commercial services such as Amazon

EC2 [1] have only scratched the surface when it comes to

provisioning heterogeneous devices, as much work remains

such as the work addressed by this paper for abstraction layers

to integrate heterogeneous devices in large clusters within the

cloud.

Field-Programmable Gate Arrays (FPGAs) have recently

been shown to be able to address the power and performance

issues being faced by data centers. The best example with

published details is the Microsoft Catapult project where

FPGAs were deployed in the Bing search engine [2] as part

of its ranking mechanism. With only a 10% increase in power

and 30% increase in cost, a 95% increase in performance

was achieved. These performance and power savings multiply

significantly at the scale of a data center.

The challenge of using FPGAs in a cloud is that there

has been little infrastructure developed to provision FPGA

resources in a way that allows many users to create and interact

with their own virtual FPGA compute cluster. In contrast, this

problem is much better understood for software-based virtual

machines (VMs). What is needed is an implementation of a

mechanism for provisioning FPGA clusters within a fully het-

erogeneous environment, where the clusters can communicate

with any other network device be it a CPU, another FPGA

cluster, or Internet-of-Things (IoT) device.

One area in which FPGAs are heavily used is the area of

networking. This area requires low-latency processing, which

might be hindered by packets traversing through the network

stack of a standard operating system. FPGAs allow users to

create custom hardware to process packets as they arrive at

line rates. The recent work on Network Function Virtualization

(NFV) [3] aims to virtualize packet processing functions, en-

abling users to instantiate software-based Virtualized Network

Functions (VNFs) from the cloud as they would any other

virtual machine. As networking bandwidth continues to grow

in the coming years, we foresee that CPUs will be unable to

satisfy network functions that require low-latency processing

at multi-Gigabit line rates, thus creating an opportunity for

FPGA-based VNFs.

In this work, our goal is to provide a joint interface for

allowing users to create both software and hardware VNFs,

and chain them together on the network. The user would

specify the VNF descriptions, which are used to instantiate

a cluster of virtual machines. These VNF descriptions, in

a traditional sense, are CPU VM software images, but we

have also adapted them to include FPGA bitstreams. This

introduces a novel heterogeneous design flow, where the user



can create a VNF software chain and incrementally move

network functions from software to hardware. This paper

continues as follows. Section II introduces background infor-

mation on the adoption of FPGAs in data centers, networking

functions and service chaining. In Section IV we delve into

our generated infrastructure and the deployment flow of our

framework. In Section V we explain our results by quantifying

the overhead of our framework, deployment infrastructure

and a few case studies. Section VI introduces related work

in FPGA networking functions and infrastructure for service

chained network functions. Lastly in Section VII we explain

future work in terms of infrastructure and applications and

Section VIII concludes the paper.

II. BACKGROUND

This section will review the background relating to Network

Function Virtualization, Software-Defined Networking, and

Service Function Chaining.

A. Software-Defined Networking and OpenFlow

Software-Defined Networking (SDN) is a concept that en-

ables programmatic control of entire networks via an under-

lying software abstraction. This is achieved by the separation

of the network control plane from the data plane as shown

in Figure 1. SDN opens the door for users to test custom

network protocols and routing algorithms, and furthermore,

it allows the creation, deletion, and configuration of network

connections to be dynamic. The current de facto standard

protocol for enabling SDN is OpenFlow [4].

Fig. 1: System diagram of an SDN, where user-defined control
programs manage network switches.

In OpenFlow, the control plane is managed by a user

program running on a CPU that leverages APIs exposed by an

SDN Controller. The SDN controller, often referred to as the

“network operating system”, abstracts away network details

from the user programs. The controller manages the data plane

and creates configurations in the form of flows. These flows

describe the overall behaviour of the network, and can be used

to specify custom paths through the network based on packet

headers, or even specify operations on the packets themselves

(e.g. drop packets, modify headers, etc.).

B. Network Function Virtualization

Network Function Virtualization (NFV) [3] is a concept

for virtualizing network functions that have traditionally been

provided by proprietary vendors as closed-box appliances. A

network function is defined as a device that provides a well-

defined network service, ranging from simple services such

as firewalls, content caches, and load balancers, to more so-

phisticated ones such as intrusion detection & prevention. With

recent gains in CPU performance, NFV aims to virtualize these

services and create Virtualized Network Functions (VNFs) in

software, running on commodity devices.

C. Service Chaining of VNFs

The activities surrounding SDN complements the recent

work on NFVs. Both concepts aim to enable more flexible pro-

visioning and management of infrastructure resources. When

NFV is deployed in conjunction with SDN, it enables network

operators the ability to create complex network services on de-

mand by steering traffic through multiple VNFs realized using

programmable resources. This practice is often called “service

function chaining” (SFC), or simply “service chaining”. In

addition, since NFV allows VNFs to be created or migrated

closer to where they are needed, SDN can be leveraged to

automatically re-route traffic to wherever the VNFs are placed.

D. Data Center Setup

We use the SAVI testbed, a Canada-wide, multi-tier hetero-

geneous cloud [5], as our data center for this work. One of the

main goals of the SAVI testbed is to explore the thesis that all

components of the physical infrastructure can be virtualized.

This testbed contains various heterogeneous resources such as

FPGAs, GPUs, Network Processors, IoT sensors and a large

number of conventional CPUs, all interconnected via a fully

SDN-enabled network fabric. As part of the ongoing research

into how to jointly manage and virtualize these resources, our

work investigates the virtualization of FPGA platforms.

Previous virtualization work conducted on this testbed in-

cludes the work by Byma et al. [6] which provided partial

FPGA regions as an extended OpenStack (see IV-B) resource,

and the work by Tarafdar et al. [7], which creates large

multi-FPGA clusters out of network-connected FPGAs. The

FPGAs in this testbed are connected to 10 Gigabit Ethernet

switches via SFP+ transceivers. This allows us to create

chains containing a mix of both FPGAs and CPUs, as they

are both connected together to the same network switches.

Our proposed framework is able to programmatically install

network flows to connect VNFs together, forwarding select

traffic between VNFs to stitch together the various networked

devices.

E. OpenStack

OpenStack [8] is an open-source cloud computing platform

used to manage the SAVI testbed. It is divided into several

services dedicated to managing different aspects of the infras-

tructure. The two main OpenStack services that we employ in



our platform are Nova and Neutron, both of which offer a set

of APIs that enable clients to make queries and requests.

Nova is primarily responsible for the virtualization of

compute resources, which involves the generation of virtual

machines (virtualized CPUs) on physical servers. When a

client requests a virtual machine, two fields are specified:

a software image, and a flavor. The software image refers

to all the software that is to be loaded onto the virtual

machine, and contains both the operating system and any other

applications that we want pre-installed in our virtual machine.

These images are typically kept in an image repository and

can be updated by users of the testbed. The flavor refers to the

physical specifications of the virtual machine, such as number

of CPU cores, RAM, and hard disk space.

Neutron is responsible for the state keeping of network

resources. Its design leverages a pluggable backend to effect

actual changes to the network. In the SAVI testbed, Neutron

uses an SDN controller to control and virtualize the network.

Thus, by liaising with Neutron, clients are able to create

and register new virtual network ports, which assigns MAC

addresses and IP addresses that will be valid for use within

the network. When creating virtual machines, these ports are

created implicitly, but we can explicitly create additional ports

for non-virtual devices or for non-CPU devices.

III. JUSTIFICATION OF DESIGN

This design presents another hardware middleware layer for

multi-FPGA environments. We define a middleware layer as

a communication layer for multiple FPGAs to communicate.

Our previous work in [7] has implemented low-level infras-

tructure and a packet-switched middleware layer for multi-

FPGA applications. That work divides a large cluster of FPGA

IP blocks connected by a logical switch where any IP block

can communicate with any other IP block through the use of

packet-headers. The work presented in this paper is a middle-

ware layer model of a circuit-switched network, where we no

longer need a header to arbitrate routing decisions as a path

is fixed until we change it with our infrastructure. This is an

appropriate use-case for network functions that intercept traffic

without modifying traffic headers. Furthermore, since packet

headers are not modified this allows us to swap portions of a

VNF chain with multiple implementations, such as swapping

a CPU implementation for an FPGA implementation. Our

infrastructure allows a user to divert traffic by providing the

IP address of their device. Since we provide both FPGAs and

CPUs with IP addresses during device allocation within our

cloud we can divert traffic to either device.

IV. INFRASTRUCTURE

This section presents the overall infrastructure of our tool’s

flow. We start by discussing the service chain scheduler and the

environment that we use to create the heterogeneous service

chains.

A. Service Chain Scheduler

The Service Chain Scheduler’s main role can be described

in two parts: it is first responsible for acquiring the user’s

(a) The allocation stage of the Service Chain
Scheduler.

(b) The connection stage of the Service Chain
Scheduler.

Fig. 2: The Service Chain scheduler divided into two stages,
an allocation stage and a connection stage.

requested resources from a pool of available resources, then

it is tasked with making the necessary network configuration

changes to steer traffic through the provisioned VNFs. Our

Service Chain Scheduler leverages OpenStack to manage the

infrastructure’s compute resources, and OpenFlow to manage

the networking between the various provisioned devices within

our data center. Figure 2 shows the high-level view of the

Service Chain Scheduler, where the two stages of its operation

are illustrated.

In the first stage shown in Figure 2(a), it is responsible

for the allocation of the CPU and FPGA resources. In our

example, the user requests a chain of both Hardware and Soft-

ware Virtualized Network Functions (denoted by HW VNF

and SW VNF, respectively). Our framework issues the nec-



essary directives to allocate virtual machines with a directly-

connected FPGA via PCIe for the HW VNF, and a standard

virtual machine with the appropriate software image for the

SW VNF. Our framework also interfaces with another virtual

machine dedicated to generating the appropriate bitstreams

for each HW VNF, where it automatically packages the user

IP provided in RTL with the appropriate ports and generates

a partial bitstream that will be programmed into the FPGA.

Alternatively, the user can also specify a hardware VNF from a

library of pre-generated bitstreams. Section IV-C will explain

the hardware infrastructure used to interface with the user-

provided VNF.

The second stage, shown in Figure 2(b) is responsible for

steering the network traffic and chaining the heterogeneous

VNFs together. By default, each virtual machine is allocated

a unique network port (within the data center). However,

for the FPGA ports, our scheduler needs to issue further

requests to Neutron and the SDN controller to acquire and

register the FPGA’s network ports. Finally, the Service Chain

Scheduler generates the required network flows to interconnect

the HW VNFs (by specifying their newly allocated ports)

and SW VNFs together. The Service Chain Scheduler first

calculates the network traffic without the VNF chain between

a network source and sink. Then for each network hop, the

traffic matching the flow is re-routed to the newly inserted

VNF of the VNF chain. This is then repeated for each VNF

in the chain. This process ensures that the network headers

match the original source and sink but are re-routed through

our VNF chain without header modification.

B. OpenStack and OpenFlow

We set up our OpenStack environment for allocation as

follows. For a SW VNF, our framework simply issues a request

for a virtual machine using an image containing the standard

Ubuntu operating system and the desired SW VNF. For a HW

VNF, the framework requests a virtual machine with a specific

flavor that contains a PCIe-connected FPGA. The resulting

virtual machine will have the standard Ubuntu operating

system and have direct access to an FPGA (described in

Section IV-C). In this setup, OpenStack uses PCIe passthrough
to give a virtual machine full access to the underlying server’s

PCIe device [9].

For each virtual machine with an FPGA, we can infer the

physical port the FPGA is connected to by looking at the ID

of the virtual machine’s underlying physical server, as we are

aware of the FPGA switch port connections given a physical

host. We use Neutron to allocate and register extra virtual

network ports per FPGA port, associating each physical port

to a corresponding virtual network port recognized by the

SDN controller. At this stage, we can request for the SDN

controller to install network flows to direct traffic between

different virtual network ports within our data center. All

of these steps are done by our Service Chain Scheduler as

described in Section IV-A.

C. FPGA Hypervisor

We provide an FPGA Hypervisor that is an abstraction for

certain I/O such as the network, PCIe, and off-chip DRAM

on the FPGA. The FPGA hypervisor is shown in Figure 3.

Along with our hypervisor, we provide a driver called the

Hardware Abstraction Layer (HAL) that can communicate

to the FPGA via PCIe. The HAL provides an API for the

user to communicate with various components on the FPGA

through a memory-mapped interface. The components include

configuring a soft-processor on the FPGA, sending control

data to an application, and writing data to off-chip memory.

With these connections, our hypervisor allows users to create

a data-path for their application using the network and the

configuration of control signals via the HAL through PCIe.

The memory-mapped interface we use for the HAL to

control the various components is the AXI protocol. This is a

protocol for memory-mapped interfaces used between Xilinx

memory-mapped IP cores as well as ARM cores [10]. For the

data path of our application we use the AXI stream interface

that is connected to the 10 Gigabit/s networking interface on

the FPGA, which streams packets as 8-byte words at a clock

rate of 156.25 MHz.

Fig. 3: System diagram of our FPGA Hypervisor.

D. Partial Reconfiguration Flow

Our framework issues requests to a dedicated bitstream

generator. Our bitstream generator tool is another virtual

machine in our data center with the appropriate software tools

installed. To create partial bitstreams, we first need a design

checkpoint that has our hypervisor synthesized with the partial

region as a place holder. For a given user IP, our framework

loads the IP into a Vivado project, wraps the project with the

appropriate ports, and then transports the packaged IP into a

project with the hypervisor IP. Our framework then creates a

netlist for the application by synthesizing only the application



in the context of the entire hypervisor. This netlist is then

loaded into our hypervisor checkpoint, and a partial bitstream

is generated. Once these bitstreams are generated, the Service

Chain Scheduler programs them onto the respective FPGAs

using the PCIe interface provided by the hypervisor.

The programming and management of our application re-

gion is done through the soft processor in the FPGA. The

processor manages the decoupling gates (denoted by the red

boxes in Figure 3), and the ICAP within the FPGA. The

ICAP is an IP within the FPGA Hypervisor that programs the

FPGA with a partial bitstream. To ensure safe programming,

the decoupling gates disconnect the application region from

the Ethernet module during partial reconfiguration. Gating

ensures that there are no transactions in flight via the data

path (AXI stream from the network) or the control path (AXI

from the PCIe) while we reprogram the application region.

Once reprogrammed, the processor un-gates the application

region, thus reconnecting it to the data and control paths again.

The gating, programming and un-gating of the application

region through the processor is initiated through an API call

within the CPU through PCIe. We took the approach of using

a processor to control the programming of the application

region because this is not on the critical path (as opposed to

directly controlling these components via PCIe). Furthermore

we would like to extend our programming capabilities via the

network so that we can easily communicate to the processor

through network packets.

E. Design Flow for Hardware NFV

Our infrastructure in the cloud also allows designers of large

multi-FPGA network designs to approach their design with an

incremental design flow. An example of this design flow is as

follows:

1) Implement all parts of the VNF design. Each function is

an OpenStack image that contains a software application

listening to the network port, performing a function, and

outputting to the port.

2) Implement and test each individual VNF as an FPGA-

offloaded design.

3) Swap the software-based VNF with the tested FPGA-

based VNF.

4) If the service chain remains functionally correct, then

repeat Steps 2 and 3 for the next VNF in the chain.

Repeat until the whole chain is implemented using

FPGAs.

V. RESULTS

In this section we explain the resource utilization of our

Hypervisor, the overhead to program the FPGAs and explore

a service chain we created within our infrastructure, one with

a SW VNF and one with a HW VNF.

A. Resource and Programming Overhead

The hypervisor includes a 10G SFP Ethernet module, Mi-

croblaze soft-processor for controlling the partial region and an

TABLE I: Resource Overhead of our Framework on the Alpha
Data 7V3 FPGA Board.

LUTS Flip-Flops BRAM
FPGA Hypervisor 62344 76124 228

(14.4 %) (8.79 %) (15.5 %)
Total Available 433200 866400 1470

off-chip memory controller. Table I summarizes the resource

overhead of our FPGA Hypervisor.

We also investigate the required time to acquire a virtual

CPU within our data center, which is on the order of minutes

(ranging from 1 to 3 minutes depending on the network load,

the size of the software image, and whether or not the image

has been cached). This time is the same for a VM with an

FPGA and a VM without an FPGA.

Lastly, we investigate the required time to create and pro-

gram our partial bitstreams. We also allow users to bypass the

stage of creating bitstreams by allowing users to supply their

own bitstreams instead of RTL. This is summarized in Table II

TABLE II: Time Required to Program and Create Application
Bitstreams and Hypervisor Bitstreams.

Time to Time to
Program FPGA (s) Create Bitstream (min)

FPGA Application 20 to 40 40 to 60
Using Partial Reconfig
FPGA Hypervisor 60 to 90 90 to 120

B. Signature Matching and String Search Case Studies

We create the VNF chain shown in Figure 4. The Service

Chain Scheduler redirects all packets coming from VNF A into

VNF B and then into VNF C. VNF A is a traffic generator in

software, VNF B is a Signature Matching Engine, and VNF C

is a destination for all traffic. We created three versions of VNF

B, an unoptimized software version, an optimized software

version and a hardware version. We attempt to process these

packets arriving at line rate, which is close to 10 Gb/s.

Our first case study is the matching of signatures within an

Ethernet packet. A signature is defined as a pattern at a specific

offset. For traditional network packets (for example, layer 2

or layer 3 packets) a signature can be defined as a header.

This notion can be extended to matching in the payload of

packets which can be used for deep packet inspection. This

can also be used to create custom headers for future internet

protocols or custom networks within a data center. We explore

a hardware implementation and software implementation of

this application.

Fig. 4: System diagram of our FPGA Hypervisor.

1) Fixed Offset Signature Matching Hardware: First we

explore the VNF chain in Figure 4 with VNF B implemented

in hardware. This was done by providing a Software Image of

VNF A, and VNF C and hardware IP implementing VNF B to



the Service Chain Scheduler that allocates the resources and

networks the VNFs together. The hardware implementation of

the signature match can be broken down into two blocks. The

first being a matching engine, and the second is a gate. The

matching engine is parameterized with the offset to look for,

the pattern to match on and a mask to specify the bits of

the signature we are interested in. The signature gate streams

the packet out with the correct checksum if all the signatures

match, or with an incorrect checksum (this causes the network

interface to drop the packet) if not all signatures match. The

signature gate is implemented to always stream out the packet

as the signature gate might not know if all the signatures

match until the last flit of the packet, and at which point

the signature gate either outputs the correct checksum or an

incorrect checksum, that results in the entire packet to be

dropped by the network interface. Each offset is described

in terms of the position of the word the offset is located in

(these are being streamed in 8-byte words). These parameters

are configured using a control path that comes from the virtual

machine CPU. Each matching engine asserts a match flag if

the packet matches the configured signature, and this signal

stays asserted for the period the packet is being streamed.

For multiple signatures these matching engines are pipelined

and the match signals generated are propagated through an

AND gate to determine if all signals have matched. To align

the match signals generated by different matching engines at

different stages of the pipeline, we insert shift-registers of

varying lengths to make sure that the match signals from

each matching engine lines up when the last matching engine

observes the last flit of the packet. This engine for matching

two signatures is shown in Figure 5.

Fig. 5: System diagram of the FPGA implementation that
matches two signatures.

The resource utilization of the signature matching engines

and the signature gate is shown in Table III. The number of

signature matching engines is dependent on the number of

signatures we wish to match, whereas the number of signature

gates is always one. For our case study we implemented up to

140 signatures on the FPGA but from our resource estimation

we can fit close to 1100 signature matching engines on the

FPGA.

TABLE III: Resource Overhead of one Signature Matching
Engine and Signature Gate.

LUTS Flip-Flops BRAM
Signature Matching Engine 301 277 0

( 0.07%) (0.0032 %) (0 %)
Signature Gate 80 4 0

(0.02 %) (0.0005 %) (0 %)

To evaluate the performance of this design we used the tool

tcpreplay [11] to send a stream of UDP packets to the FPGA.

The rate was limited by the network connection at 10 Gb/s

where we saw performance peak at close to 9.7 Gb/s. The

slight drop is due to the extra overhead of framing and control

bits that are not displayed with most network monitoring tools.

The FPGA was able to keep up to line rate due to the pipelined

nature of the solution as we observed the same throughput

exiting the FPGA with no packet drop.

2) Fixed Offset Signature Matching Software: With our

Service Chain Scheduler we can redirect network traffic from

VNF A to our second implementation of VNF B, which is

a software implementation of VNF B. Our initial software

implementation used the C Berkeley sockets library. The

application issues a system call using the sockets API to read a

packet from the operating system’s network stack. Each packet

is then buffered and for each signature, if it is found at its

prescribed offset, a flag is set. If all the flags are set, then the

buffered packet is written to the outgoing socket via another

system call. Figure 6 shows the performance of the packets

being sent and and returned in software. Note that the packets

are sent at approximately close to 9.7 Gb/s (Rx Rate is the

rate of input to VNF B) but as we increase the number of

signatures the software implementation cannot keep up to line

rate (indicated by the Tx Rate, the rate of output from VNF

B).

Fig. 6: Fixed offset signature matching using Berkeley sockets.
Throughput of packets sent and returned versus the number of
signatures.

The observed throughput drop can be attributed to either

the overhead of the system calls to the network stack, or the

actual CPU computation involved in finding the signatures.



To isolate the CPU computation we use the Intel Data Plane

Development Kit (DPDK) [12], which gives the CPU low-

level access to network interface card drivers, bypassing the

traditional network stack. After re-implementing the software

version of the signature matching with DPDK on the network

interface we observed that the CPU can perform at line rate.

We observe the transmission throughput at 9.7 Gb/s, equivalent

to the rate packets are received, with no packet drop. This

shows that in this particular use case the CPU computation

can keep up with the FPGA implementation at line rate.

3) String Matching in Hardware: Now we look at im-

plementing a second VNF function for VNF B, which is

string matching. This is similar to the signature matching use

case introduced earlier with the exception that we no longer

configure our engine with an offset, as now the string can

occur at any point in the packet. The VNF is configured

with the search string through the HAL and PCIe interface.

We currently fix our string length to 10 bytes. The overall

architecture of the HW VNF remains the same with a matching

engine per signature and a gate at the end of the stream. The

implementation of the matching engine is modified to be a

shift register, which stores the last 10 bytes that the matching

engine has seen, and then compares this to the configured

pattern we are checking for. Similar to the previous use case

this is also a pipelined application that can operate at line-

rate. The resource utilization of this VNF is summarized in

Table IV. We also synthesized up to 140 signatures and we can

fit up to 1200 signatures into our current application region.

We use our Service Chain Scheduler to redirect traffic from

VNF A to this implementation of VNF B.

TABLE IV: Resource overhead for one string matching and
signature gate.

LUTS Flip-Flops BRAM
String Matching Engine 272 209 0

( 0.063%) (0.0024 %) (0 %)
Signature Gate 80 4 0

(0.02 %) (0.0005 %) (0 %)

Similar to the first use case this is also a pipelined imple-

mentation and the HW VNF can process the packets at line-

rate. For a received packet transmission rate of 9.7 Gb/s we

see a transmission rate of 9.7 Gb/s with 0 packet drop.

4) String Searching in Software: We implemented this

application using the DPDK libraries to limit the overhead

of the network interface. This application requires scanning

through the entire packet for each signature the user wants to

search for. The performance for this version of the SW VNF

is shown in Figure 7. This application does show a drop in

throughput after about 30 signatures, which is when the CPU

cannot keep up to line rate and packets start to get dropped.

These use cases have shown that there exists cases where

a VNF can process packets at line rate in software and in

hardware, thus showing the potential of large-scale hetero-

geneous chaining of VNFs. This also shows how with our

Service Chain Scheduler we can easily create VNFs, modify

Fig. 7: String searching using DPDK: Throughput of packets
sent and returned versus the number of string signatures.

large VNF chains and substitute VNFs within a chain easily

by redirecting flows.

VI. RELATED WORK

This section presents related work in implementing VNFs

on FPGAs and managing FPGAs in cloud platforms.

A. Hardware VNF Implementations

The use of FPGAs for network processing has been explored

since the early 2000s. Lockwood et al. [13] demonstrated

through the FPx platform that FPGAs can be useful when

appended to the data path of network processing through sev-

eral applications such as packet routing, data queuing and data

content modification; these applications can be implemented

through the use of VNFs. Other applications such as packet

classification [14], and deep packet inspection [15], can also be

implemented as VNFs and thus automatically chained together

with our infrastructure. Similar to software applications in

SDN we can similarly implement OpenFlow extensions in

hardware such as [16]. All of these works show applications

that can be modelled as hardware VNFs that now can be

automated and combined with software VNFs in our platform.

B. FPGA Management in Cloud Platforms

Our Service Chain Scheduler allocates and connects re-

sources, including FPGA resources from a pool of FPGA

resources. In this section we will look at other related works

that allocate FPGAs within a data center, or connect FPGA

clusters in a data center.

The work proposed by Byma et al. [6] uses OpenStack to

manage Virtual FPGA Resources (VFR). This infrastructure

created an FPGA hypervisor with a 1 Gb/s network port

and four application regions. Each application region is a

VFR, which is programmed via partial reconfiguration. This

infrastructure allows multiple users to share one FPGA.

The work proposed by Chen et al. [17] also uses Open-

Stack to manage non-network connected FPGAs. This was

implemented by modifying the Linux hypervisor KVM. This

creates the hypervisor in software to manage the FPGA.



IBM’s SuperVessel project [18] uses OpenStack to provision

a single non-network connected FPGA as part of an accelerator

with a virtual machine CPU. SuperVessel allows users to create

accelerator engines out of user provided IP, and returns to

the user a programmed FPGA with a tightly coupled virtual

machine CPU. IBM continued a proof of concept with network

connected FPGAs in their Hyperscale project [19]. This proof

of concept proposes modifying OpenStack to accept bitstreams

and returns a network connected FPGA by returning an IP

address of the network connected device.

Microsoft has also published their revised version of

Catapult that has FPGAs connected directly to network

switches [20]. The output of the host NIC connects to the other

FPGA port. Thus the CPU network connection is through the

FPGA, whereas the FPGA is directly connected to the network

switch ensuring that FPGA applications have low-latency.

VII. FUTURE WORK

Currently our work considers a VNF as an entire FPGA

bitstream. This may be wasteful in this situation as a VNF

could be a small function. One area of future work can be to

pack multiple VNFs as kernels within one FPGA and package

one bitstream containing multiple VNFs. This is similar to the

approach taken in Tarafdar et al. [7], where multiple FPGA

kernels can be mapped onto one FPGA (as part of an FPGA

cluster). We can also take the approach proposed by Byma et

al. [6] where the one FPGA is divided into multiple partial

regions. This would allow us to have the same granularity of

one VNF per bitstream but share the FPGA. This approach

would also allow us to share one FPGA across multiple users

in the data center.

We would like to move towards a model that supports

stand-alone FPGAs as well as FPGAs with PCIe CPU con-

trollers. Currently the programming is managed via the PCIe-

connected CPU. However if we configure our processor con-

trolling the application region to be programmed via the

network we can support stand-alone network-connected FP-

GAs in our framework. This will require us to remodel how

these accelerators are allocated via OpenStack as we cannot

manage them with their CPU anymore. We can continue to use

OpenFlow to program the network flows between network-

connected FPGAs.

We would also like to implement a large-scale library of

VNFs. A library of VNFs where some VNFs are implemented

in software and others in hardware can help us investigate VNF

chains on a large-scale. It will also be interesting to study

which applications to implement in software or in hardware.

Existing packet processing libraries such as Snort, which is a

library of security related can be implemented in a series of

hardware and software VNFs within our framework [21].

VIII. CONCLUSION

Our infrastructure automates the creation of VNFs from a

pool of resources available in a data center. Our use cases and

related work has shown that there are situations for which a

hardware VNF can be useful for high performance line-rate

processing network applications. Our framework will allow

the user to create a large chain of heterogeneous VNFs using

software and hardware functions. This will allow users to

specialize applications in modules that are appropriate for

FPGA or CPU and allow an incremental deployment flow for

FPGA VNF chains.
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