
Enabling Network Function Virtualization over
Heterogeneous Resources

Thomas Lin, Naif Tarafdar, Byungchul Park, Paul Chow, and Alberto Leon-Garcia
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, ON, Canada
t.lin@mail.utoronto.ca, naif.tarafdar@mail.utoronto.ca, byungchul.park@utoronto.ca

pc@eecg.toronto.edu, alberto.leongarcia@utoronto.ca

Abstract—The economies of scale afforded by cloud computing
has been a driving force behind the rapid development and
deployment of new cloud-based network applications and ser-
vices. With the massive growth of IoT devices, we expect a
sharp rise in the volume of traffic seen going to and coming
from cloud datacenters, which will continue to grow over the
next several years. Network Function Virtualization (NFV) is a
recent concept which promises to grant network operators the
required flexibility to quickly develop and provision new network
functions and services in the cloud. As NFV is agnostic to the
computing resource, we foresee scenarios where unconventional
resources such as FPGAs and GPUs will be of benefit. To
this end, we present an architecture based on Software-Defined
Infrastructure (SDI) which offers an abstracted control and
management interface over virtualized heterogeneous resources
in the cloud. Through a unified set of APIs, this architecture
enables both application developers and network operators to
dynamically deploy and manage new services in the cloud
alongside the underlying network that interconnects them, all in a
fully software-defined manner. We demonstrate and evaluate an
implementation of our NFV-enablement architecture using the
SAVI testbed, a multi-tier and SDN-enabled cloud containing
virtualized heterogeneous compute resources.

I. INTRODUCTION AND MOTIVATION

Cloud computing has been a driving force in the rapid de-
velopment and deployment of new applications. In the modern
era of mobile IoT, a flurry of new applications has resulted in
an explosive growth of global traffic emanating from cloud
datacenters. It is estimated that by 2020, 92% of workloads
will be cloud-based, with the largest contributing applications
being video streaming and IoT-related data analytics [1]. We
foresee that certain applications and services may require low
latency or local storage and processing of sensitive data. Thus,
recent works have proposed distributing small-scale cloud
datacenters at the edge, or even on premise, closer to the
end-users [2][3][4][5]. This in turn has driven a revolution in
the operations and management of communication networks,
realized in the embrace of the “software-ization” of things.

The recent activities in Software-Defined Networking
(SDN) has been a key driver in the evolution of network
operations and management. Meanwhile, the rise of Network
Function Virtualization (NFV) [6] promises to drive innovation
for service providers who embrace the cloud. With NFV, net-
work operators can create virtualized network functions (VNF)
using programmable resources in the cloud (e.g. software

running in containers or virtual machines). SDN highly com-
plements the recent work on NFV, where network operators or
administrators can dynamically spawn VNFs and strategically
place them close to where they are needed, while leveraging
SDN to direct traffic to the VNFs’ location. The benefit of
SDN with NFV becomes more apparent when we consider
cases of dynamically scaling and migrating existing VNFs, as
well as service chaining a series of VNFs to realize a more
sophisticated network function. An email service chain, for
example, could include anti-virus, spam filtering, and phishing
detection. Each component can be implemented as a VNF and
SDN can be utilized to dynamically route the email traffic
through them.

In the modern era, cloud providers face a large diversity of
application and data processing requirements. At a high level,
data processing tasks can be categorized as either compute
intensive and/or network intensive [7]. Compute intensive
tasks require significant CPU resources, while network in-
tensive tasks require high network bandwidths to process
high-volume traffic. This begs the question: is there a one-
size-fits-all approach to realizing VNFs? Although software-
based VNFs provides flexibility and rapid development cycles,
they suffer from lower performance compared to dedicated
hardware middle boxes when processing compute or network
intensive tasks. As the volume and variability of cloud traffic
increases, we foresee more demanding network functions that
will require higher performance and scalability. In such cases,
VNFs will require hardware acceleration based on specialized
resources including programmable hardware (FPGAs) and
general purpose graphics processing units (GPUs) to meet their
performance goals.

To this end, clouds comprising heterogeneous compute
resources have been studied and implemented in both aca-
demic (e.g. the SAVI testbed [8]) and commercial settings
(EC2 [9] and Azure [10]). In each of these clouds, users can
easily obtain compute resources, but they must configure and
program the resources themselves. Thus, providing specialized
heterogeneous resources may be wasteful if there are not
enough users with the knowledge or skills to operate them.
We argue that the process of providing VNFs should be
simpler, where the service provider offers a library of pre-built
VNFs for the user to choose from. In a richly heterogeneous
infrastructure, the challenge arises regarding how to provision,978-1-5386-1101-2/17/$31.00 c©2017 IEEE

58978-1-5386-1101-2/17/$31.00 ©2017 IEEE APNOMS 2017

manage, and control such diverse resources alongside the net-
work that chains them together in a tightly integrated fashion,
and transparently expose their functionality to users. From the
users’ perspective, it does not matter how VNFs are provided
or delivered as long as their desired level of performance
is met. Meanwhile, cloud service providers need a method
for seamlessly switching to using hardware acceleration if the
performance requested by the user is not possible to achieve
on generic CPU-based resources (e.g. VMs or containers).

In this paper, we will present the design and implementation
of an infrastructure control and management system that
enables the creation of heterogeneous NFV service chains
in a unified manner. Afterwards, we present an evaluation
which motivates the need for hardware-accelerated VNFs,
and showcasing our system’s ability to hot-plug VNFs on-
the-fly. Section II will present the background and related
work. Section III will discuss the requirements needed for
our heterogeneous NFV enablement system, and is followed
by our design and implementation presented in section IV. A
functional evaluation in section V will showcase the validity
of our system, and section VI will conclude this paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief discussion of background
and related works upon which this paper builds on.

A. OpenStack
OpenStack1 is an open-source cloud computing platform

composed of many different sub-projects and services. In this
work, the main services we use are Nova and Neutron. Nova is
OpenStack’s compute virtualization service, and traditionally
was only used to virtualize CPUs to create VMs. Nova’s design
offloads the actual virtualization tasks to pluggable agent
processes running within remote servers. We also leverage
Neutron, OpenStack’s networking service. Similar to Nova’s
design, Neutron can work with many network management
technologies by nature of its pluggable architecture. By itself,
Neutron merely stores network state information, and thus
relies on vendor plugins to realize the state stored in its
database and configure the relevant networking devices (e.g.
switches and routers).

B. Smart Applications on Virtualized Infrastructure
As part of the Canadian Smart Applications on Virtualized

Infrastructure (SAVI) project2, we have developed a country-
wide multi-tier heterogeneous cloud testbed [8]. The multi-tier
aspect refers to the fact that the testbed is comprised of a few
Core datacentres, and several “Smart Edge” datacentres. The
Core datacentres contain a plethora of CPUs for conventional
VMs. The Smart Edge datacentres, which are smaller in size,
are physically located closer to end-users and contain various
types of heterogeneous resources. This strategic placement of
the heterogeneous resources enable applications that require
specialized low-latency processing.

One of the main goals of the SAVI testbed, which currently
spans eight university institutions, has been to explore the idea

1https://www.openstack.org
2https://www.savinetwork.ca

that all components of the physical infrastructure can be shared
and virtualized. The testbed contains various heterogeneous
resources including, but not limited to, a large number of
conventional VMs, GPUs, FPGAs, SDRs, IoT sensors, and etc.
Research regarding how to best virtualize and share these types
of resources in a unified fashion is currently ongoing. While
the various datacentres in the SAVI testbed are interconnected
via a dedicated 1 Gigabit Ethernet (GE) WAN, within many
of the datacentres, the resources are interconnected via high
performance 10 and 100 GE OpenFlow-enabled switches. This
makes the SAVI testbed the ideal platform upon which to
conduct our work.

C. Hardware Acceleration in NFV

ETSI has previously released an NFV Infrastructure speci-
fication [11] which presents the high-level architectural pieces
required for an infrastructure to natively supports NFV. Fol-
lowing this specification, in [7], Bronstein et al. demonstrated
a proof of concept showcasing the benefits of hardware accel-
eration for certain network and compute intensive VNFs (load
balancing and IPsec).

Our work goes further by presenting a framework for
enabling hardware VNFs using a unified set of APIs. In
addition, we present an architecture that exposes APIs for users
to not only acquire their own hardware-accelerated VNFs,
but also to dynamically control the network to create unique
service chains.

III. REQUIREMENTS

In this section, we describe the functional requirements and
objectives a cloud environment needs in order to support NFV
and service chaining over heterogeneous resources.

A. Required Functionalities

To realize NFV service chaining over heterogeneous re-
sources, at minimal there are two things that are required:
1) An infrastructure control and management system with a
way to abstract multiple resource types; and 2) A method to
control the network flows in order to form new chains or alter
existing ones. We elaborate both of these points below.
Abstraction over multiple resources types: An abstraction
hides the details of an underlying entity. Although the ab-
stractions provided by a cloud varies based on the cloud
computing models (X as Service), the most fundamental one is
cloud resource abstraction in IaaS. This enables the creation,
termination, and configuration of resources. In a traditional
cloud, only conventional resources such as compute, memory,
and storage were abstracted. However, to realize NFV over
heterogeneous resources, providing an abstraction and control
over all types of resources through a common set of APIs is
required.
Dynamic service chaining: A service chain consists of a set of
network functions that are interconnected through the network
to support an application. When NFV is deployed in an SDN-
enabled network environment, it is possible to dynamically
create a chain of virtualized network functions (VNFs). When
hardware acceleration of a network function is needed, a user
or network operator should be able to easily re-route traffic to

59

hardware VNFs. Dynamic service chaining also enables the
sharing of VNFs between different applications, which can
reduce operational costs and optimizes the use of available
resources.

B. Objectives

While the two aforementioned requirements are essential
for our goals, there are objective features which are heavily
desirable for improving the system and would help operators
and users deploy new NFV-based applications more easily.
Unified APIs: As new resource types are integrated into a
given infrastructure, we would like to avoid creating new APIs
for each type. Thus, we desire to have a unified API for all
types of resources in a given class (e.g. an API for compute
resources may include VMs, FPGAs, GPUs; while wireless
resources may include SDRs, Wi-Fi APs, and cellular). This
keeps the number of APIs limited and easily centralized, and
the specific type of resource can be a simple parameter.
Orchestration: Orchestration is the end-to-end automated
deployment of services in a cloud environment. It helps to
accelerate the delivery of IT services by allowing users to eas-
ily define and create new applications, systems, middlewares,
and services. An orchestration service should allocate and
configure a set of resources as well as configure the network
based on user-specified orchestration templates.
Auto-scaling: Auto-scaling allows users to automatically scale
their resources according to user-defined conditions, helping
them maintain application uptime and performance levels.
It is desirable for the NFV enablement service to provide
auto-scaling of the VNFs in the service chains. For example,
an VNF can be dynamically scaled up (e.g. increasing total
compute capacity) when its utilization nears saturation, or
scaled down when they are under-utilized.
Monitoring Service: Monitoring of resources is essential for
the operation and management of infrastructures, services,
and applications. Cloud infrastructures should be able to
monitor the status of resources such as the network and
CPU utilization, memory consumption, service up-time, and
many other performance metrics. Such monitoring features is
a very a essential step towards realizing efficient auto-scaling,
orchestration, and quick troubleshooting.
VNF Repository: Current clouds do not provide VNFs di-
rectly to users, but instead provide the resources needed to
create their own custom VNFs from scratch. However, not
all users have the skills or knowledge to implement these
appliances. Instead, users may wish to deploy pre-built VNFs,
or upload their own custom VNFs to be shared with others.
The VNF repository keeps pre-built VNF images (e.g., DPI,
firewall, load balancer, and etc.) which users can deploy with
minimum efforts.

IV. INFRASTRUCTURE DESIGN AND IMPLEMENTATION

We now present a design for realizing a cloud infrastructure
management system that meets the functional requirements
and objectives discussed in the previous section.

Fig. 1. High-Level Architecture of Software-Defined Infrastructure (SDI)

A. Software-Defined Infrastructure

We utilize a control and management architecture based
on Software-Defined Infrastructure (SDI) [2] to orchestrate
multiple heterogeneous resources. Similar to how SDN con-
trollers provide interfaces for novel network control applica-
tions to be built upon, the “software-defined” aspect of the
SDI management architecture, as shown in Fig. 1, refers to
the fact that the system provides a set of open programmatic
interfaces (APIs) for the enablement of infrastructure control
applications. Our in-house SDI management system exposes
the necessary APIs to make the acquisition, configuration,
management, and retirement of resources a fully software-
defined process. While users can create applications using
these low-level basic APIs, these applications themselves may
in turn provide more complex services by taking high-level
requests from users and translating the requests into the lower-
level API calls, thus extending the basic capabilities provided
by the SDI manager. In this way, users and administrators alike
can construct unique PaaS services based on SDI APIs.

Also shown in Fig. 1 is how an SDI manager can liaise with
and control multiple resource types. For each resource type
within the infrastructure (e.g. x86 compute servers, FPGAs,
GPUs, IoT sensors, network switches, access points, etc.),
there is an associated controller responsible for interfacing
with and configuring those resources. Each resource controller
is then interfaced with the SDI manager and associated mon-
itoring service. The set of resource controllers represent an
abstraction between the infrastructure resources themselves
and the SDI manager, thus enabling the SDI manager to
operate while remaining agnostic of the underlying technology.
Future resources types can be incorporated into the manage-
ment framework by interfacing an appropriate virtualization
and control system with the SDI manager. This also enables
the resource controllers to evolve while keeping the SDI APIs
consistent.

B. Heterogeneous Service Chains using SDI

In this section, we discuss how we leverage the SDI
architecture to implement a platform which enables flexible
instantiation and chaining of heterogeneous VNFs. Figure 2

60

Fig. 2. SAVI Control and Management System based on SDI Architecture

describes the design of a SAVI “Smart Edge” node based on
the SDI architecture. The SDI manager leverages OpenStack,
an industry standard cloud computing platform, alongside
OpenFlow, the de facto standard SDN protocol, to abstract the
available resources. The OpenStack and OpenFlow controllers
enable direct virutalization and control of the computing
and networking resources, respectively. The SDI manager
liaises with the controllers to perform converged control and
management tasks. We briefly elaborate on each of the vital
components and how they meet our requirements.
OpenStack Support: We leverage OpenStack’s Nova and
Neutron components to help virtualize the compute resources
and store network state information. We designed special plu-
gins for both Nova and Neutron for them to inter-operate with
our SDI manager, providing it with the necessary information
to have an up-to-date view of the infrastructure. In turn, the
SDI manager can call the Nova APIs for virtualizing com-
pute resources. By default, OpenStack does not support the
virtualization of unconventional resources such as FPGAs or
GPUs. Thus, we have extended it to support the virtualization
of such resources by modifying OpenStack Nova, which runs
in remote physical servers hosting FPGAs and GPUs.

When virtualizing GPUs, we are currently able to offer
complete control of the device in two different ways: complete
baremetal or as part of a VM. A complete baremetal offering
provides the entire physical server within which the GPU re-
sides. This is useful for applications with intensive processing
demands that require both the GPU and a large complement
of CPUs. Alternatively, we can provision a VM with access
to an underlying GPU via PCIe passthrough, a method for
passing control of physical PCIe-connected devices through a
hypervisor. This may be more desirable for applications that
simply pass incoming data directly to the GPU for processing,
without need to do much local processing on the CPU.

For virtualizing FPGAs, we have several potential options:
complete control over an entire FPGA board, control over a

small sub-region of an FPGA board [12], or control over a
cluster of several FPGAs [13]. The decision of which one
to use depends on a given application’s needs. Control over
entire boards (multi or single) can be achieved in much the
same way as the GPUs, through either complete baremetal or
PCIe passthrough. Each of these options are exposed as flavors
in our extended version of the OpenStack Nova service. In this
way, we are able to support the virtualization of multiple types
of compute resources in a unified manner via the standard
Nova API.

By default, the ports on an FPGA lacks any specific
MAC or IP address information. Our system must assign this
information in order for other end-hosts and devices within the
network to communicate with it. When a user acquires a new
FPGA resource, a new IP and MAC is generated by creating
a virtual port via the OpenStack Neutron service. The virtual
port is then mapped to the physical switch interface where
the FPGA’s port is connected by registering it with the SDI
manager, thus providing it the information required to direct
packets (via OpenFlow control of the network) to and from
the FPGA.

OpenFlow Support: In our SDI-based management architec-
ture, the OpenFlow controllers acts as proxies on behalf of the
SDI manager, receiving the networking related events from the
OpenFlow-enabled switches, and sets up flow table rules and
actions according to decisions made by the SDI manager. Such
events include not only PacketIn events, but also events related
to changes in the topology (e.g. ports going up or down). Such
a design allows the SDI manager, with its global view over
the state of the entire infrastructure and its resources, to set up
informed and optimal network flows according to any SLAs
required by the users and their applications.

As we consider the network as just another resources
that users should be able to programmatically control, the
SDI manager exposes APIs to allow users to install custom
networking flow rules into the switches of the infrastructure
at layer 2 Ethernet. Normally, the exposure of capabilities
at such a low level would open up the system to potential
abuse. However, being positioned atop of both OpenStack
and the OpenFlow controllers, the SDI manager is well
suited to handle the necessary authorization and authentication
of incoming flow installation requests from users. We have
developed and introduced a conflict avoidance mechanism
that ensures different tenants’ custom network flows do not
interfere with one another, constraining their operation within
their authorized realm [14].

Using these basic flow-based networking APIs, we created a
higher-level service specifically for enabling dynamic service
function chaining. Given two endpoints and a set of VNF
middleboxes, this chaining service can adjust the network
flow configurations to redirect traffic (bi-directional or uni-
directional) to go through the VNF. These flows can also be
adjusted dynamically to allow users to swap different VNFs in
and out of the service chain, which is particularly useful when
needing to scale to a larger virtual appliance or switching from
a CPU-based appliance to an FPGA-based implementation.

61

C. Meeting Objectives
We now consider how we are able to meet the various

objectives previously discussed in section III-B.
VNF Repository: To realize a VNF repository, we use the
image repository service from OpenStack (Glance) which
allows us to upload VM images or take snapshots of existing
VMs. Using such a service as a repository for VM-based
VNFs is straight forward; however, we can also leverage
the same service in order to store raw hardware bitstreams
for FPGA-based implementations. A bitstream describes the
configuration of the logic on an FPGA to create the desired
custom hardware logic. In the case of FPGAs connected to a
VM via PCIe passthrough, customized disk images can be
created that re-programs the FPGA upon VM bootup. For
further customization of the VNFs, the images can contain
a server process designed to receive API calls to further
configure the FPGA VNF. For GPU-based VNFs, a similar
strategy is also applicable by storing pre-built CUDA kernels
within bootable disk images using the existing repository
service.
Orchestration: To achieve basic orchestration, we utilize the
OpenStack orchestration service Heat, which allows us to
allocate and configure multiple resources in one shot. Since
our system design and implementation allows us to provision
heterogeneous compute resources through a unified APIs, we
can re-use Heat for these other types of resources. Heat allows
us to write plugins to extend the resources it is able to
orchestrate, allowing us to integrate it with the SDI manager’s
exposed set of APIs.
Monitoring & Auto-Scaling: Our SDI-based management
architecture has a monitoring co-service called MonArch [15]
that is able to liaise with the resource controllers of the the
infrastructure to collect data from various sources. The SDI
manager is able to leverage this service to query various
metrics related to the resources of a given application, and
perform big-data analytics to evaluate trends and perform
diagnostics. This insight can then be used by the SDI manager
to auto-scale resources as needed to meet any pre-programmed
SLAs required by applications.
Incremental Heterogeneous Design Flow: The heterogeneity
of compute resources enables an incremental design flow
for developing FPGA and GPU VNFs. As the development
cycle on these devices may be longer than in software, we
can first implement a service chain quickly in software and
incrementally swap parts of the chain for FPGA or GPU
VNFs as they become available, depending on the computation
requirements. This also allows cloud service providers to
create multiple implementations of the same VNF (e.g. in
software and on an FPGA) and allows users to choose VNFs
based on their performance requirements.

V. FUNCTIONAL EVALUATION

We present two experiments to evaluate the functional
correctness and performance of our system.

A. Experiment 1: Hardware-Accelerated Signature Matching
In the first experiment, we aim to motivate and estab-

lish the need for hardware-accelerated VNFs for compute-

Fig. 3. Throughput of FPGA vs Software Based VNFs

intensive tasks in high-bandwidth settings. Our sample NFV
service chain implements a white-list signature filter, where
all signatures must be found in order for the packet to pass
through. This involves scanning packet payloads for strings
(i.e. a simple deep packet inspection).

We developed two versions of the string searching VNF,
one in software and one using an FPGA. Ensuring peak
performance in the software implementation required us to
perform many micro-optimizations of the code. We also
leveraged the Data Plane Development Kit (DPDK) [16], a
library which gives software applications direct kernel access
for enabling high-speed packet processing. Additionally, we
forced our VM onto a custom server with a CPU clocked
at 3.5 GHz, which we note is much higher than the clock
speeds on CPU models offered by most public clouds [17][18].
Our FPGA VNF was implemented using Vivado’s High-Level
Synthesis [19] (HLS), a set of libraries which allows users
to write algorithms in C/C++ that gets compiled down to a
digital hardware implementation.

We steer a 10 Gbps flow of traffic through the VNF and
compare the throughput of the chain with the software-based
VNF versus the FPGA VNF. Both implementations utilized the
same word search algorithm and processed the same traffic.
Our target signatures were fixed to be 10 Bytes in length, and
our payloads were 1470 Bytes. We then varied the number of
signatures from 10 to 140 signatures. As shown in Fig. 3, the
software-based VNF becomes a bottleneck as the throughput
dwindles once the number of signatures surpasses 20, dropping
significantly afterwards. Meanwhile, the FPGA-based VNF is
able to process the traffic at line rate and does not represent
a bottleneck in the chain.

As datacentre network traffic continues to grow, we foresee
VM-based software VNFs will be unable to cope with compute
and network intensive workloads and applications. Such VNF
applications may include stateful deep packet inspection, high-
bandwidth flow statistics measurements (i.e. without sam-
pling), video processing, traffic encryption/decryption, and so
forth.

B. Experiment 2: Application Downtime of Hot-Swapping
In our second experiment, we show the application down-

time incurred by our system when hot-swapping a software-
based VNF out of an existing service chain and replacing it

62

Fig. 4. Throughput During Hot-Swap of Software VNF for Hardware VNF:
Downtime of 0.12 second at around 43 second mark

with an FPGA-based VNF. Since the goal here is to simply
observe the downtime of the traffic, the VNF is a plain
traffic forwarder and no optimization work was done. In this
experiment, we utilize a simple UDP flooder as the traffic
source. This experiment was conducted in a region of our
testbed with only 1 GE links.

Figure 4 shows the results of our experiment. The chain is
dynamically formed using the software VNF at roughly 10 sec-
onds in. After about 30 seconds, we hot-swap an FPGA-based
VNF in, which involves installing new flows into the network
to re-direct the traffic through the FPGA VNF and tearing
down the old flows. As seen in the figure, this results in a brief
application downtime of 0.12 seconds at around 43 seconds
in, during which time packets are dropped. Additionally, it can
be seen that the software implementation had trouble keeping
up with the traffic source when faced with large numbers of
small packets, while the FPGA-based version had no such
issues. From these results and our experience, we find that
achieving peak performance in software requires much micro-
optimization work from the users, while creating hardware
implementations via HLS achieves more performance for the
same amount of effort.

VI. CONCLUSIONS AND FUTURE WORK

Driven by the surge of IoT and data-related workloads, the
migration of existing applications and services to the cloud is
expected to accelerate over the next several years. This rapid
shift towards the cloud will result in an accelerated growth of
traffic volume within datacentres, where we foresee compute
and network intensive workloads performed using traditional
VM-based software VNFs will run into performance difficul-
ties. This motivates new research on how to best incorporate
specialized resources such as FPGAs and GPUs into future
cloud infrastructures.

In this paper, an SDI-based architecture for enabling NFV
service chains in heterogeneous cloud infrastructures has been
presented. Via a unified set of APIs, our architecture performs
converged control and management over resources comprising
conventional compute and network resources as well as un-
conventional hardware resources such as FPGAs and GPUs.
We designed and implemented the proposed architecture on
the SAVI testbed, a multi-tiered cloud infrastructure con-

taining heterogeneous compute, wireless, and IoT resources.
We demonstrated how our system enables users to construct
unique high-performance network services based on SDN-
enabled multi-resource NFVs.

In future work, we will work to populate our library of
VNFs for the various resource types within the SAVI testbed.
In addition, we will also investigate ways to minimize the
application downtime due to hot-swapping VNFs. We also plan
to improving our monitoring of services and VNFs such that
we can proactively scale them before performance is degraded.

REFERENCES

[1] Cisco, “Cisco Global Cloud Index: Forecast and Methodology 2015-
2020,” in Cisco White Paper, 2016.

[2] J.-M. Kang, H. Bannazadeh, H. Rahimi, T. Lin, M. Faraji, and A. Leon-
Garcia, “Software-Defined Infrastructure and the Future Central Office,”
in Communications Workshops (ICC), 2013 IEEE International Confer-
ence on, pp. 225–229, June 2013.

[3] IDC, “The Business Benefits of Implementing NFV: New Virtualized
vCPE Enterprise Services,” Nov. 2014. [Online; accessed 8-June-
2015]. Available: http://www8.hp.com/h20195/V2/getpdf.aspx/4AA5-
6949ENW.pdf.

[4] L. Velasco, L. Contreras, G. Ferraris, A. Stavdas, F. Cugini, M. Wiegand,
and J. Fernandez-Palacios, “A Service-Oriented Hybrid Access Network
and Clouds Architecture,” Communications Magazine, IEEE, vol. 53,
pp. 159–165, April 2015.

[5] ETSI, “Mobile-Edge Computing - Introductory Technical White Paper,”
in ETSI White Paper, 2014.

[6] ETSI, “Network Functions Virtualisation (NFV); Architectural Frame-
work.” https://portal.etsi.org/nfv/nfv white paper.pdf, 2013.

[7] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform Handling and
Abstraction of NFV Hardware Accelerators,” IEEE Network, vol. 29,
pp. 22–29, May 2015.

[8] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, SAVI Testbed Ar-
chitecture and Federation, pp. 3–10. Springer International Publishing,
2015.

[9] “Elastic Cloud Compute (EC2) - AWS.” [Online] Available:
https://aws.amazon.com/ec2/ [Accessed: April 2017].

[10] “Microsoft Azure - Cloud Computing Platform & Services.” [Online]
Available: https://azure.microsoft.com/ [Accessed: April 2017].

[11] ETSI, “Network Functions Virtualisation (NFV); Infrastructure
Overview,” in ETSI GS NFV-INF 001 V1.1.1, 2015.

[12] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow,
“FPGAs in the Cloud: Booting Virtualized Hardware Accelerators
with OpenStack,” in Field-Programmable Custom Computing Machines
(FCCM), 2014 IEEE 22nd Annual International Symposium on, pp. 109–
116, May 2014.

[13] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Enabling Flexible Network FPGA Clusters in a Heterogeneous
Cloud Data Center,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 237–246,
ACM, 2017.

[14] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, “Enabling L2
Network Programmability in Multi-Tenant Clouds,” in 2017 IFIP/IEEE
International Symposium on Integrated Network Management (IM), May
2017.

[15] J. Lin, Q. Zhang, B. Park, H. Bannazadeh, and A. Leon-Garcia,
“MonArch: Monitoring and Analytics in Software Defined Infrastruc-
tures,” in 2015 IEEE 4th International Conference on Cloud Networking
(CloudNet), Oct 2015.

[16] “Data Plane Development Kit.” [Online] Available: http://dpdk.org/
[Accessed: May 2017].

[17] “EC2 Instance Types.” [Online] Available:
https://aws.amazon.com/ec2/instance-types/ [Accessed: May 2017].

[18] “Azure Windows VM Sizes - Compute Optimized.” [Online] Available:
https://docs.microsoft.com/en-gb/azure/virtual-machines/windows/sizes-
compute [Accessed: May 2017].

[19] “Vivado High-Level Synthesis.” [Online] Available:
https://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html [Accessed: May 2017].

63

