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 A cloud network can be seen as a large collection 
of shared resources, which are then provisioned to 
users by multiplexing them in time and space. This pro-
visioning is known as infrastructure as a service where 
users can build large computing infrastructures without 
the investment of purchasing physical clusters of com-
puting devices. The sharing of these computational 
resources is done through virtualization, in which a 
layer of abstraction hides the physical details of the 
shared resources from the user. These physical details 
include other users that are sharing the resource, the 
actual physical location of the resource, and possibly 
even the physical specifications of the device. This 
gives the illusion of a complete physical resource to 
the user. The privacy, performance, and other com-
plications that arise due to the sharing of devices are 
popular areas of research. While this is still a growing 
area of research, there exists commercial services such 
as Amazon EC2 [1], along with academic services such 
as the SAVI [2] testbed.

Field-programmable gate arrays (FPGAs) have 
recently been shown to be able to address the 
power and performance issues being faced by 
data-centers. The best example with published 
details is the Microsoft Catapult project, where 

FPGAs were deployed in 
the Bing search engine 
[3]. With only a 10% 
increase in power and 
30% increase in cost, a 
95% increase in perfor-
mance was achieved. 
The FPGAs were used 
to implement a part of 

Bing’s ranking engine in custom hardware. The 
performance and power savings multiply signifi-
cantly at the scale of a data center.

The challenge of using FPGAs in a cloud is that 
there has been little infrastructure developed to pro-
vision FPGA resources in a way that allows many 
users to create and interact with their own virtual 
FPGA compute cluster. In contrast, this problem is 
much better understood for software-based virtual 
machines (VMs). What is needed is a complete 
implementation of a mechanism for provisioning 
an FPGA cluster within a fully heterogenous envi-
ronment, where the cluster can communicate with 
any other network device (be it CPU, another FPGA 
cluster, or Internet-of-Things device).

Our overall work explores the provisioning 
of FPGAs from a pool of cloud resources. The 
FPGAs are provisioned to the user as PCIe devices 
connected to a virtual CPU in our cloud. These 
resources are managed with OpenStack [4], which 
is an open source cloud management tool. Once 
the user receives a VM with an FPGA, the user pro-
grams the FPGA with the Xilinx SDAccel Tool [5]. 
The SDAccel framework abstracts away much of the 
FPGA I/O such as the PCIe interface to the host and 
off-chip memory. The user manages the application 
region with an OpenCL host application running on 
the CPU that communicates to the FPGA application 
(implemented in OpenCL, C++, C, or even HDL).

Editor’s note:
This article proposes a flow to provision FPGAs from a pool of cloud 
resources. The proposed flow can lead to more efficient sharing of limited 
FPGA resources by enabling FPGA development and simulation in virtual 
machines.

—Mustafa Ozdal, Bilkent University
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This paper focuses on the design and test aspect 
of our infrastructure, which allows users to develop 
and simulate an FPGA in a VM, and then migrate 
their application to a VM with a connected phys-
ical FPGA. This tool flow enables more efficient 
sharing of limited FPGA resources. Previous work 
has explored the infrastructure to provision large 
network FPGA clusters within the cloud [6]. We 
are currently in the process of implementing net-
work function virtualization (NFV) by chaining net-
work functions implemented in FPGAs and CPUs. 
In this paper, we will explore how the design flow 
for chaining FPGA functions is done, particularly 
an incremental design flow done by incorporating 
chains or part of the chain in software simulation 
before migrating the functions to FPGAs.

Background
This section reviews the background about 

OpenStack, FPGAs, software-defined networking 
(SDN), and NFV.

OpenStack
OpenStack [4] is the cloud management platform 

used in our cloud data center, and the two main 
OpenStack services that we employ in our design are 
Nova and Neutron. Nova is responsible for the deploy-
ment of compute resources from the infrastructure, 
which involves the generation of VMs on physical 
machines. When a user client requests a VM, they 
are required to specify a software image and a flavor. 
The software image refers to the disk image used to 
generate the VM, which includes the operating system 
and any other software applications that are required 
to be installed on the VM. These images are typically 
kept in a repository and can be updated by users of 
the data center. The flavor refers to the physical speci-
fications of the VM, such as the number of CPU cores, 
RAM, and hard drive space.

Neutron is responsible for the provisioning of net-
work resources. We can create network ports within 
our cluster, and these ports are assigned MAC addresses 
and IP addresses that will be valid within the cluster. 
When creating VMs these ports are created implicitly, 
but we can explicitly create additional ports for nonvir-
tual devices or nonCPU compute devices.

Field programmable gate arrays
FPGA is a silicon chip with a programmable 

switching fabric that can be used to implement 

customized digital hardware circuits. In contrast to 
the standard CPU environment where the circuitry 
stays constant and the circuitry performs actions 
based on instructions, an FPGA changes its circuitry 
depending on the application.

Logic functions are implemented with the use 
of lookup tables (LUTs), which essentially imple-
ments the truth tables for arbitrary functions. In 
addition to the LUTs are hardwired flip flops, DSP 
blocks, memory blocks, and input/output inter-
faces such as Ethernet and PCIe. FPGA CAD tools 
synthesize the user-specified design and map it into 
the physical resources.

FPGAs have traditionally been programmed 
with hardware description languages that describe 
the hardware at a very low level, which makes 
FPGA design inaccessible to software developers. 
Recently, high-level synthesis has emerged as a new 
technology that can translate high-level languages 
such as C, C++, and OpenCL into physical circuit 
descriptions. Furthermore, FPGA-based platform 
architectures have made FPGA programming even 
easier by abstracting many of the interfaces such as 
PCIe, Ethernet, and off-chip DRAM.

Software-defined networking and OpenFlow
SDN is a concept that enables programmatic 

control of entire networks via an underlying soft-
ware abstraction. This is achieved by the separation 
of the network control plane from the data plane 
as shown in Figure 1. SDN opens the door for users 
to test custom network protocol and routing algo-
rithms, and furthermore, it allows the creation, dele-
tion, and configuration of network connections to 
be dynamic. The current de facto standard protocol 
for enabling SDN is OpenFlow [7].

In OpenFlow, the control plane is managed by a 
user program running on a CPU that leverages APIs 
exposed by an SDN Controller. The SDN control-
ler, often referred to as the “network operating sys-
tem,” abstracts away network details from the user 
programs. The controller manages the data plane 
and creates configurations in the form of flows. 
These flows describe the overall behavior of the 
network, and can be used to specify custom paths 
through the network based on packet headers, or 
even specify operations on the packets themselves  
(e.g., drop packets, modify headers, and so on). 
While the switches in the data plane can han-
dle simple header matching and modification of 
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header fields, more complicated features, such as 
pattern-matching within the payload or modifying 
the payload data, require the packets to be forwarded 
up to the control plane for processing in software. 
Per-packet software-based processing often incurs 
significant latencies and reduces line-rate.

This creates an opportunity for FPGAs: FPGAs 
can combine the best of both worlds with the recon-
figurable nature of software programs in the control 
plane, and the low-latency of the switches in the data 
plane. An example of a project using FPGAs in SDN 
can be seen in [8]. This project was implemented 
with virtualized FPGAs in a data center, where two 
virtualized FPGAs were inserted into the data path 
of a network flow. Packets that normally would have 
been sent to the control plane for custom processing 
were instead redirected to the FPGAs for processing. 
Using this approach, the throughput of the packets is 
the same as a direct path through a switch; whereas 
when the packets were handled by software running 
in the control plane, only half the expected through-
put was observed.

Xilinx SDAccel
In our design, we use the Xilinx SDAccel [5] plat-

form as an FPGA hypervisor, where the hypervisor 
is used to provide some basic services. The FPGA in 
this model is a PCIe-connected device and the plat-
form first provides a driver to communicate to the 
FPGA. This is done through OpenCL, which provides 
the API to communicate to and manage computing 
devices implemented in the FPGA.

OpenCL is both a programming language for 
heterogeneous devices and a programming API for 
a host application (conventionally run on a CPU) 
to manage and communicate to OpenCL compat-
ible devices [9] often connected to the proces-
sor via PCIe. In the SDAccel Platform, as shown in 
Figure 2, the OpenCL API communicates to a driver 
provided by Xilinx called the hardware abstraction 
layer (HAL) that provides driver calls to send or 
receive data from the FPGA and program the appli-
cation region in the FPGA. The application region is 
programmed using partial reconfiguration, and the 
region around the application region is the hyper-
visor in our model. In this platform, the computing 
circuit implemented in the application region can 
be created using high-level synthesis of OpenCL, C, 
or C++ code or hand-coded Verilog/VHDL. Partial 
reconfiguration allows the programming of a certain 

Figure 1. System diagram of an SDN, where 
user- defined control programs manage 
 network switches.

Figure 2. System diagram of the SDAccel 
platform.

portion of the FPGA (the application region) without 
programming the surrounding portions (Ethernet, 
PCIe, and off-chip memory).

The PCIe Module is a master to a DMA engine to 
read or write to off-chip DRAM. This is used to com-
municate data to the application region. The PCIe 
Module is also a master to a module (not shown) 
responsible for programming the partially reconfig-
urable region with a bitstream sent from the user 
in software. The HAL driver provides an API that 
abstracts away the addresses required to control the 
various slaves of the PCIe master.
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Previous work on FPGA cloud deployment
After our initial deployment, there have been 

several works implementing FPGAs in cloud environ-
ments but details are limited. IBM’s SuperVessel looks 
at providing an FPGA as a cloud resource which shares 
memory (through CAPI) with a CPU, also provisioned 
with OpenStack [10]. In this model, a single FPGA is 
provisioned to the user as an accelerator to which the 
user can upload FPGA code to be run and compiled 
onto the FPGA. This simplifies the process of provi-
sioning an FPGA and running code to be accelerated 
on the FPGA but works with a single FPGA. Microsoft 
has also continued their work with data-center FPGAs 
with the second iteration of Catapult [11]. The model 
here looks at providing a backbone infrastructure for 
multiple FPGAs to be connected together through a 
high performance network switch. CPUs are tightly 
coupled with FPGAs, and the FPGAs are connected 
to the switch. FPGAs communicate amongst each 
other through a low-overhead custom transport layer. 
Finally, Amazon AWS has recently announced that 
they are introducing Xilinx UltraScale+ VU9P FPGAs 
connected to VMs via a virtual JTAG connection to 
their cloud resource pool [12].

Network function virtualization
NFV is a concept for creating novel network 

services by chaining together individual network 
functions realized using programmable resources 
in the cloud. These chained functions can range 
from standard networking services such as firewalls 

and load-balancing to more complex features such 
as deep-packet inspection and intrusion detection. 
The virtualization of these functions, which are often 
implemented in software, enables targeted place-
ment of functions closer to end-users, as well as 
dynamic scaling based on load.

When NFV is deployed in an SDN-enabled net-
work, traffic can be steered through a series of virtu-
alized network functions on-demand. This operation 
is called service chaining, and has the potential to 
provide network operators with greater flexibility at 
reduced operational costs. An example is shown in 
Figure 3, where an operator forms a chain of virtual-
ized network functions.

FPGAs deployed in our heterogeneous 
cloud platform

This section describes our infrastructure used to 
provision FPGAs from a pool of cloud resources.

PCIe passthrough and OpenStack image
First, we provide the FPGA as part of a VM using 

PCIe passthrough, which is when the VM is given 
full access to a PCIe device on the physical server. 
OpenStack notifies the software hypervisor on the 
physical server of the VM parameters using the 
flavor discussed in OpenStack. These parameters 
also include information about any PCIe devices 
required by the user. This involves configuring 
the hypervisor to pass control of the PCIe device 
to a specific VM by adding the PCIe vendor and 
device ID of the FPGA to the OpenStack configura-
tion script on the physical server. The cloud man-
agement system then provisions the VM including 
the requested PCIe device(s). Figure 4 shows two 
example VMs with PCIe-connected FPGAs.

Second, we have created multiple OpenStack fla-
vors corresponding to the PCIe devices. Each flavor 
describes the configurations of the desired VM. These 
configurations include the number and type (specified 
by the device ID and vendor ID) of PCIe devices. We 
made two flavors, one lightweight flavor and another for 
a full development environment. The lightweight flavor, 
which consists of only two CPU cores and 2 GB of mem-
ory, is intended for the CPU on the VM to act as a mere 
controller for the FPGA. The full development environ-
ment, which consists of four CPU cores and 8 GB of 
memory, provides a complete environment to create 
and test FPGA designs as well as control the FPGA.

Figure 3. An example of an NFV chain consisting of a 
firewall and traffic monitors implemented using virtual 
machines (VMs). In this example, one of the traffic 
monitors, upon observing a specified pattern, will 
notify the SDN controller to reroute the network flows 
accordingly.
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We then create a software image containing 
the software tools required to communicate to the 
FPGA. We created two different software images as 
well. One contains the complete development tool-
chain of Xilinx SDAccel Vivado 2015.1. This contains 
the software required to design, debug, and program 
FPGAs. We also created a stripped down version of 
the tool chain to only include the PCIe driver that is 
used by the CPU to program the application region 
of the FPGA and to send data to the FPGA.

Design and test environment
We deployed our FPGA cloud service in 

May 2015. Since then it has been used by students 
within the University of Toronto as part of their own 
FPGA development environment. Our infrastruc-
ture lays the groundwork for a new design flow 
that helps utilize and share the FPGAs effectively. 
This is done through the use of software simula-
tion of FPGAs. The software tools provided within 
the SDAccel environment allow for simulating the 
application region completely in software, with 
no change to the user software application that is 
calling the application. The simulated application 
region is wrapped to provide the exact same inter-
face for the HAL as is done in the actual hardware. 
In this way, the same HAL can be used during soft-
ware simulation to transfer data to and from the 
simulated application region.

Our environment gives the user flexibility to pro-
vision a VM containing the FPGA development tools 

with and without a physical FPGA. This creates a 
new design flow as follows:

• User develops their application on a VM without 
an FPGA. The user requests a VM with a flavor that 
does not have the FPGA and the software image 
containing the FPGA software tools. The user tests 
their design using the software-simulated FPGA.

• Once the user is ready to migrate their work to a 
physical FPGA, they save a snapshot of their VM. 
This is done through an OpenStack API to save 
the state of a VM.

• The snapshot is then uploaded to the OpenStack 
software image repository. The user then requests 
a new VM with a flavor that has the FPGA and the 
software image snapshot saved in Step 2.

• Now the user can test their application on a 
physical FPGA. After testing, they can migrate 
their application back to a VM without an 
FPGA. They once again will save a snapshot 
of their VM but this time migrate to a machine 
without an FPGA.

This design flow allows for easy sharing of the 
FPGA. Cloud managers can track usage of the phys-
ical FPGAs by using monitoring functions provided 
by OpenStack.

This also has further implications toward reus-
ability of FPGA applications as functions. Similar 
to software applications such as NFV applications, 
we can create FPGA applications as virtualized 
resources, upload the application to OpenStack, 
and have them available as a software image to be 
readily available to everyone. We will explore this 
in the following section.

NFVs using FPGAs
Software-defined networking and OpenFlow 

describes how FPGAs can be useful in the area of 
SDN. Furthermore, we can easily implement NFV 
chains using virtualized network functions and 
SDN as described in network function virtualiza-
tion. However, as the implementation of these 
 functions are typically done in software, they have 
the potential to cause bottlenecks and reduce net-
work line-rate. Our infrastructure allows us to cre-
ate virtualized network functions with FPGAs that 
can be extremely beneficial in networking applica-
tions and services. An example of NFV application 
is shown in Figure 3. We can update this configura-
tion as shown in Figure 5.

Figure 4. An example of two VMs on a 
single server. One VM with one PCIe FPGA 
and the other one has two PCIe FPGAs.
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• If the NFV chain remains functionally correct, 
then repeat Steps 2 and 3 for the next part of the 
chain. Repeat until the whole chain is imple-
mented using FPGAs.

Results and case study
Our infrastructure uses partial reconfiguration 

to program the application region managed by the 
SDAccel Hypervisor on the Alpha Data 7v3 board 
which uses a Virtex 7 FPGA. The hypervisor occu-
pies 14.4% of the LUTs, 8.79% of the Flip-Flops, and 
15.5% of the BRAM on the FPGA, leaving the rest of 
the FPGA to be used by the application. Our hypervi-
sor provides the user an interface to memory, PCIe, 
and 10 Gb/s Ethernet.

The FPGAs are provisioned using PCIe passthrough. 
The time to provision a VM with an FPGA and without 
an FPGA is the same in our data center which ranges 
from 1 to 3 min (as long as there exists a server with an 
FPGA that has not been provisioned to a VM).

FPGAs can perform better in applications in 
which require stream processing. This is an applica-
tion model popular in networking and multimedia 
applications. For demonstrating an FPGA network 
function, we use a string-matching application. The 
string-matching application traverses through an 
entire packet searching for a collection of strings, if 
all the strings are found the packet is forwarded to the 
output. On the FPGA, this is handled at line-rate as this 
is implemented with a simple shift-register. Our soft-
ware implementation of this uses the Intel DPDK [13] 
library which provides a low-latency networking inter-
face to the network packet allowing us to bypass the 
traditional network stack. Until 30 strings the software 
implementation can keep up at line-rate, after which 
we become CPU bound and we see performance 
dropping to 30% of the packets which continues to 
exponentially decrease as we increase the number of 
strings to match, dropping about 80% of the packets 
with 140 strings. The FPGA experiences no packet 
drop as we increase the number of strings.

This shows that we can implement a more effi-
cient version of the application on an FPGA. This is 
a perfect use-case for our incremental design flow 
where we can first create a version in software and 
migrate to an FPGA implementation.

Future work
We are also looking into creating a library of 

NFV blocks to be used within our data center. Other 

In Figure 5, each VM is connected to an FPGA 
using PCIe passthrough. Each VM listens for net-
work packets on their network interface, offloads 
the processing and computations to the FPGA, and 
if necessary outputs them back onto the network. 
We are currently in the process of enabling 10-Gb 
network connections directly on the FPGAs so they 
can receive and send packets from the network 
without requiring any interaction from the VM other 
than configuration. Eliminating the VM from the 
data path will reduce latency and allow full network 
line rate to be maintained. Incorporating the FPGA 
design within the OpenStack environment allows for 
an incremental design flow, similar to that described 
in design and test environment. The design flow of 
NFVs with FPGAs in our environment is as follows:

• Implement all parts of the NFV design as a soft-
ware NFV as shown in network function virtu-
alization. Each function is an OpenStack image 
that contains a software application listening to 
the network port, performing a function, and out-
putting to the port.

• Implement and test each individual network 
function as an FPGA-offloaded design. The 
design flow for each individual component is 
highlighted in design and test environment.

• Incrementally, as we complete each part of the 
NFV chain, swap the software-based function 
with the FPGA-based implementation.

Figure 5. An example of the NFV chain implemented 
with FPGAs. In this example, all the NFVs in the chain 
are implemented on an FPGA, but this can be chained 
with other NFVs implemented in software and other 
implementations.
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areas of future exploration include: debugging plat-
forms, which we can investigate by rerouting pack-
ets between chains and feeding them to a global 
debugger, partitioning of a large circuit into multiple 
FPGAs, and the complete virtualization of the FPGA.

In thIs pAper, we have described how we have 
used OpenStack to provision FPGAs that are availa-
ble as a cloud-based resource. By leveraging the VM 
model and features within OpenStack, we show that 
it is possible to design and test an FPGA application 
entirely in software before committing to the actual 
hardware implementation. This is particularly useful 
when many FPGAs are chained in an NFV application 
as the FPGAs can be individually tested in hardware, 
while the rest of the chain is still running in software. 
While FPGAs must be handled very differently from 
processors running software, it is still possible to lever-
age existing platforms, such as OpenStack, to accom-
modate the inclusion of FPGAs into the cloud. 
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