
232168-2356/17 © 2017 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJanuary/February 2018

Designing for FPGAs
in the Cloud
Naif Tarafdar, Nariman Eskandari,
Thomas Lin, and Paul Chow
University of Toronto

Digital Object Identifier 10.1109/MDAT.2017.2748393

Date of publication: 8 September 2017; date of current version:

2 February 2018.

 A cloud network can be seen as a large collection
of shared resources, which are then provisioned to
users by multiplexing them in time and space. This pro-
visioning is known as infrastructure as a service where
users can build large computing infrastructures without
the investment of purchasing physical clusters of com-
puting devices. The sharing of these computational
resources is done through virtualization, in which a
layer of abstraction hides the physical details of the
shared resources from the user. These physical details
include other users that are sharing the resource, the
actual physical location of the resource, and possibly
even the physical specifications of the device. This
gives the illusion of a complete physical resource to
the user. The privacy, performance, and other com-
plications that arise due to the sharing of devices are
popular areas of research. While this is still a growing
area of research, there exists commercial services such
as Amazon EC2 [1], along with academic services such
as the SAVI [2] testbed.

Field-programmable gate arrays (FPGAs) have
recently been shown to be able to address the
power and performance issues being faced by
data-centers. The best example with published
details is the Microsoft Catapult project, where

FPGAs were deployed in
the Bing search engine
[3]. With only a 10%
increase in power and
30% increase in cost, a
95% increase in perfor-
mance was achieved.
The FPGAs were used
to implement a part of

Bing’s ranking engine in custom hardware. The
performance and power savings multiply signifi-
cantly at the scale of a data center.

The challenge of using FPGAs in a cloud is that
there has been little infrastructure developed to pro-
vision FPGA resources in a way that allows many
users to create and interact with their own virtual
FPGA compute cluster. In contrast, this problem is
much better understood for software-based virtual
machines (VMs). What is needed is a complete
implementation of a mechanism for provisioning
an FPGA cluster within a fully heterogenous envi-
ronment, where the cluster can communicate with
any other network device (be it CPU, another FPGA
cluster, or Internet-of-Things device).

Our overall work explores the provisioning
of FPGAs from a pool of cloud resources. The
FPGAs are provisioned to the user as PCIe devices
connected to a virtual CPU in our cloud. These
resources are managed with OpenStack [4], which
is an open source cloud management tool. Once
the user receives a VM with an FPGA, the user pro-
grams the FPGA with the Xilinx SDAccel Tool [5].
The SDAccel framework abstracts away much of the
FPGA I/O such as the PCIe interface to the host and
off-chip memory. The user manages the application
region with an OpenCL host application running on
the CPU that communicates to the FPGA application
(implemented in OpenCL, C++, C, or even HDL).

Editor’s note:
This article proposes a flow to provision FPGAs from a pool of cloud
resources. The proposed flow can lead to more efficient sharing of limited
FPGA resources by enabling FPGA development and simulation in virtual
machines.

—Mustafa Ozdal, Bilkent University

24 IEEE Design&Test

Hardware Accelerators for Data Centers

This paper focuses on the design and test aspect
of our infrastructure, which allows users to develop
and simulate an FPGA in a VM, and then migrate
their application to a VM with a connected phys-
ical FPGA. This tool flow enables more efficient
sharing of limited FPGA resources. Previous work
has explored the infrastructure to provision large
network FPGA clusters within the cloud [6]. We
are currently in the process of implementing net-
work function virtualization (NFV) by chaining net-
work functions implemented in FPGAs and CPUs.
In this paper, we will explore how the design flow
for chaining FPGA functions is done, particularly
an incremental design flow done by incorporating
chains or part of the chain in software simulation
before migrating the functions to FPGAs.

Background
This section reviews the background about

OpenStack, FPGAs, software-defined networking
(SDN), and NFV.

OpenStack
OpenStack [4] is the cloud management platform

used in our cloud data center, and the two main
OpenStack services that we employ in our design are
Nova and Neutron. Nova is responsible for the deploy-
ment of compute resources from the infrastructure,
which involves the generation of VMs on physical
machines. When a user client requests a VM, they
are required to specify a software image and a flavor.
The software image refers to the disk image used to
generate the VM, which includes the operating system
and any other software applications that are required
to be installed on the VM. These images are typically
kept in a repository and can be updated by users of
the data center. The flavor refers to the physical speci-
fications of the VM, such as the number of CPU cores,
RAM, and hard drive space.

Neutron is responsible for the provisioning of net-
work resources. We can create network ports within
our cluster, and these ports are assigned MAC addresses
and IP addresses that will be valid within the cluster.
When creating VMs these ports are created implicitly,
but we can explicitly create additional ports for nonvir-
tual devices or nonCPU compute devices.

Field programmable gate arrays
FPGA is a silicon chip with a programmable

switching fabric that can be used to implement

customized digital hardware circuits. In contrast to
the standard CPU environment where the circuitry
stays constant and the circuitry performs actions
based on instructions, an FPGA changes its circuitry
depending on the application.

Logic functions are implemented with the use
of lookup tables (LUTs), which essentially imple-
ments the truth tables for arbitrary functions. In
addition to the LUTs are hardwired flip flops, DSP
blocks, memory blocks, and input/output inter-
faces such as Ethernet and PCIe. FPGA CAD tools
synthesize the user-specified design and map it into
the physical resources.

FPGAs have traditionally been programmed
with hardware description languages that describe
the hardware at a very low level, which makes
FPGA design inaccessible to software developers.
Recently, high-level synthesis has emerged as a new
technology that can translate high-level languages
such as C, C++, and OpenCL into physical circuit
descriptions. Furthermore, FPGA-based platform
architectures have made FPGA programming even
easier by abstracting many of the interfaces such as
PCIe, Ethernet, and off-chip DRAM.

Software-defined networking and OpenFlow
SDN is a concept that enables programmatic

control of entire networks via an underlying soft-
ware abstraction. This is achieved by the separation
of the network control plane from the data plane
as shown in Figure 1. SDN opens the door for users
to test custom network protocol and routing algo-
rithms, and furthermore, it allows the creation, dele-
tion, and configuration of network connections to
be dynamic. The current de facto standard protocol
for enabling SDN is OpenFlow [7].

In OpenFlow, the control plane is managed by a
user program running on a CPU that leverages APIs
exposed by an SDN Controller. The SDN control-
ler, often referred to as the “network operating sys-
tem,” abstracts away network details from the user
programs. The controller manages the data plane
and creates configurations in the form of flows.
These flows describe the overall behavior of the
network, and can be used to specify custom paths
through the network based on packet headers, or
even specify operations on the packets themselves
(e.g., drop packets, modify headers, and so on).
While the switches in the data plane can han-
dle simple header matching and modification of

25January/February 2018

header fields, more complicated features, such as
pattern-matching within the payload or modifying
the payload data, require the packets to be forwarded
up to the control plane for processing in software.
Per-packet software-based processing often incurs
significant latencies and reduces line-rate.

This creates an opportunity for FPGAs: FPGAs
can combine the best of both worlds with the recon-
figurable nature of software programs in the control
plane, and the low-latency of the switches in the data
plane. An example of a project using FPGAs in SDN
can be seen in [8]. This project was implemented
with virtualized FPGAs in a data center, where two
virtualized FPGAs were inserted into the data path
of a network flow. Packets that normally would have
been sent to the control plane for custom processing
were instead redirected to the FPGAs for processing.
Using this approach, the throughput of the packets is
the same as a direct path through a switch; whereas
when the packets were handled by software running
in the control plane, only half the expected through-
put was observed.

Xilinx SDAccel
In our design, we use the Xilinx SDAccel [5] plat-

form as an FPGA hypervisor, where the hypervisor
is used to provide some basic services. The FPGA in
this model is a PCIe-connected device and the plat-
form first provides a driver to communicate to the
FPGA. This is done through OpenCL, which provides
the API to communicate to and manage computing
devices implemented in the FPGA.

OpenCL is both a programming language for
heterogeneous devices and a programming API for
a host application (conventionally run on a CPU)
to manage and communicate to OpenCL compat-
ible devices [9] often connected to the proces-
sor via PCIe. In the SDAccel Platform, as shown in
Figure 2, the OpenCL API communicates to a driver
provided by Xilinx called the hardware abstraction
layer (HAL) that provides driver calls to send or
receive data from the FPGA and program the appli-
cation region in the FPGA. The application region is
programmed using partial reconfiguration, and the
region around the application region is the hyper-
visor in our model. In this platform, the computing
circuit implemented in the application region can
be created using high-level synthesis of OpenCL, C,
or C++ code or hand-coded Verilog/VHDL. Partial
reconfiguration allows the programming of a certain

Figure 1. System diagram of an SDN, where
user- defined control programs manage
 network switches.

Figure 2. System diagram of the SDAccel
platform.

portion of the FPGA (the application region) without
programming the surrounding portions (Ethernet,
PCIe, and off-chip memory).

The PCIe Module is a master to a DMA engine to
read or write to off-chip DRAM. This is used to com-
municate data to the application region. The PCIe
Module is also a master to a module (not shown)
responsible for programming the partially reconfig-
urable region with a bitstream sent from the user
in software. The HAL driver provides an API that
abstracts away the addresses required to control the
various slaves of the PCIe master.

26 IEEE Design&Test

Hardware Accelerators for Data Centers

Previous work on FPGA cloud deployment
After our initial deployment, there have been

several works implementing FPGAs in cloud environ-
ments but details are limited. IBM’s SuperVessel looks
at providing an FPGA as a cloud resource which shares
memory (through CAPI) with a CPU, also provisioned
with OpenStack [10]. In this model, a single FPGA is
provisioned to the user as an accelerator to which the
user can upload FPGA code to be run and compiled
onto the FPGA. This simplifies the process of provi-
sioning an FPGA and running code to be accelerated
on the FPGA but works with a single FPGA. Microsoft
has also continued their work with data-center FPGAs
with the second iteration of Catapult [11]. The model
here looks at providing a backbone infrastructure for
multiple FPGAs to be connected together through a
high performance network switch. CPUs are tightly
coupled with FPGAs, and the FPGAs are connected
to the switch. FPGAs communicate amongst each
other through a low-overhead custom transport layer.
Finally, Amazon AWS has recently announced that
they are introducing Xilinx UltraScale+ VU9P FPGAs
connected to VMs via a virtual JTAG connection to
their cloud resource pool [12].

Network function virtualization
NFV is a concept for creating novel network

services by chaining together individual network
functions realized using programmable resources
in the cloud. These chained functions can range
from standard networking services such as firewalls

and load-balancing to more complex features such
as deep-packet inspection and intrusion detection.
The virtualization of these functions, which are often
implemented in software, enables targeted place-
ment of functions closer to end-users, as well as
dynamic scaling based on load.

When NFV is deployed in an SDN-enabled net-
work, traffic can be steered through a series of virtu-
alized network functions on-demand. This operation
is called service chaining, and has the potential to
provide network operators with greater flexibility at
reduced operational costs. An example is shown in
Figure 3, where an operator forms a chain of virtual-
ized network functions.

FPGAs deployed in our heterogeneous
cloud platform

This section describes our infrastructure used to
provision FPGAs from a pool of cloud resources.

PCIe passthrough and OpenStack image
First, we provide the FPGA as part of a VM using

PCIe passthrough, which is when the VM is given
full access to a PCIe device on the physical server.
OpenStack notifies the software hypervisor on the
physical server of the VM parameters using the
flavor discussed in OpenStack. These parameters
also include information about any PCIe devices
required by the user. This involves configuring
the hypervisor to pass control of the PCIe device
to a specific VM by adding the PCIe vendor and
device ID of the FPGA to the OpenStack configura-
tion script on the physical server. The cloud man-
agement system then provisions the VM including
the requested PCIe device(s). Figure 4 shows two
example VMs with PCIe-connected FPGAs.

Second, we have created multiple OpenStack fla-
vors corresponding to the PCIe devices. Each flavor
describes the configurations of the desired VM. These
configurations include the number and type (specified
by the device ID and vendor ID) of PCIe devices. We
made two flavors, one lightweight flavor and another for
a full development environment. The lightweight flavor,
which consists of only two CPU cores and 2 GB of mem-
ory, is intended for the CPU on the VM to act as a mere
controller for the FPGA. The full development environ-
ment, which consists of four CPU cores and 8 GB of
memory, provides a complete environment to create
and test FPGA designs as well as control the FPGA.

Figure 3. An example of an NFV chain consisting of a
firewall and traffic monitors implemented using virtual
machines (VMs). In this example, one of the traffic
monitors, upon observing a specified pattern, will
notify the SDN controller to reroute the network flows
accordingly.

27January/February 2018

We then create a software image containing
the software tools required to communicate to the
FPGA. We created two different software images as
well. One contains the complete development tool-
chain of Xilinx SDAccel Vivado 2015.1. This contains
the software required to design, debug, and program
FPGAs. We also created a stripped down version of
the tool chain to only include the PCIe driver that is
used by the CPU to program the application region
of the FPGA and to send data to the FPGA.

Design and test environment
We deployed our FPGA cloud service in

May 2015. Since then it has been used by students
within the University of Toronto as part of their own
FPGA development environment. Our infrastruc-
ture lays the groundwork for a new design flow
that helps utilize and share the FPGAs effectively.
This is done through the use of software simula-
tion of FPGAs. The software tools provided within
the SDAccel environment allow for simulating the
application region completely in software, with
no change to the user software application that is
calling the application. The simulated application
region is wrapped to provide the exact same inter-
face for the HAL as is done in the actual hardware.
In this way, the same HAL can be used during soft-
ware simulation to transfer data to and from the
simulated application region.

Our environment gives the user flexibility to pro-
vision a VM containing the FPGA development tools

with and without a physical FPGA. This creates a
new design flow as follows:

• User develops their application on a VM without
an FPGA. The user requests a VM with a flavor that
does not have the FPGA and the software image
containing the FPGA software tools. The user tests
their design using the software-simulated FPGA.

• Once the user is ready to migrate their work to a
physical FPGA, they save a snapshot of their VM.
This is done through an OpenStack API to save
the state of a VM.

• The snapshot is then uploaded to the OpenStack
software image repository. The user then requests
a new VM with a flavor that has the FPGA and the
software image snapshot saved in Step 2.

• Now the user can test their application on a
physical FPGA. After testing, they can migrate
their application back to a VM without an
FPGA. They once again will save a snapshot
of their VM but this time migrate to a machine
without an FPGA.

This design flow allows for easy sharing of the
FPGA. Cloud managers can track usage of the phys-
ical FPGAs by using monitoring functions provided
by OpenStack.

This also has further implications toward reus-
ability of FPGA applications as functions. Similar
to software applications such as NFV applications,
we can create FPGA applications as virtualized
resources, upload the application to OpenStack,
and have them available as a software image to be
readily available to everyone. We will explore this
in the following section.

NFVs using FPGAs
Software-defined networking and OpenFlow

describes how FPGAs can be useful in the area of
SDN. Furthermore, we can easily implement NFV
chains using virtualized network functions and
SDN as described in network function virtualiza-
tion. However, as the implementation of these
 functions are typically done in software, they have
the potential to cause bottlenecks and reduce net-
work line-rate. Our infrastructure allows us to cre-
ate virtualized network functions with FPGAs that
can be extremely beneficial in networking applica-
tions and services. An example of NFV application
is shown in Figure 3. We can update this configura-
tion as shown in Figure 5.

Figure 4. An example of two VMs on a
single server. One VM with one PCIe FPGA
and the other one has two PCIe FPGAs.

28 IEEE Design&Test

Hardware Accelerators for Data Centers

• If the NFV chain remains functionally correct,
then repeat Steps 2 and 3 for the next part of the
chain. Repeat until the whole chain is imple-
mented using FPGAs.

Results and case study
Our infrastructure uses partial reconfiguration

to program the application region managed by the
SDAccel Hypervisor on the Alpha Data 7v3 board
which uses a Virtex 7 FPGA. The hypervisor occu-
pies 14.4% of the LUTs, 8.79% of the Flip-Flops, and
15.5% of the BRAM on the FPGA, leaving the rest of
the FPGA to be used by the application. Our hypervi-
sor provides the user an interface to memory, PCIe,
and 10 Gb/s Ethernet.

The FPGAs are provisioned using PCIe passthrough.
The time to provision a VM with an FPGA and without
an FPGA is the same in our data center which ranges
from 1 to 3 min (as long as there exists a server with an
FPGA that has not been provisioned to a VM).

FPGAs can perform better in applications in
which require stream processing. This is an applica-
tion model popular in networking and multimedia
applications. For demonstrating an FPGA network
function, we use a string-matching application. The
string-matching application traverses through an
entire packet searching for a collection of strings, if
all the strings are found the packet is forwarded to the
output. On the FPGA, this is handled at line-rate as this
is implemented with a simple shift-register. Our soft-
ware implementation of this uses the Intel DPDK [13]
library which provides a low-latency networking inter-
face to the network packet allowing us to bypass the
traditional network stack. Until 30 strings the software
implementation can keep up at line-rate, after which
we become CPU bound and we see performance
dropping to 30% of the packets which continues to
exponentially decrease as we increase the number of
strings to match, dropping about 80% of the packets
with 140 strings. The FPGA experiences no packet
drop as we increase the number of strings.

This shows that we can implement a more effi-
cient version of the application on an FPGA. This is
a perfect use-case for our incremental design flow
where we can first create a version in software and
migrate to an FPGA implementation.

Future work
We are also looking into creating a library of

NFV blocks to be used within our data center. Other

In Figure 5, each VM is connected to an FPGA
using PCIe passthrough. Each VM listens for net-
work packets on their network interface, offloads
the processing and computations to the FPGA, and
if necessary outputs them back onto the network.
We are currently in the process of enabling 10-Gb
network connections directly on the FPGAs so they
can receive and send packets from the network
without requiring any interaction from the VM other
than configuration. Eliminating the VM from the
data path will reduce latency and allow full network
line rate to be maintained. Incorporating the FPGA
design within the OpenStack environment allows for
an incremental design flow, similar to that described
in design and test environment. The design flow of
NFVs with FPGAs in our environment is as follows:

• Implement all parts of the NFV design as a soft-
ware NFV as shown in network function virtu-
alization. Each function is an OpenStack image
that contains a software application listening to
the network port, performing a function, and out-
putting to the port.

• Implement and test each individual network
function as an FPGA-offloaded design. The
design flow for each individual component is
highlighted in design and test environment.

• Incrementally, as we complete each part of the
NFV chain, swap the software-based function
with the FPGA-based implementation.

Figure 5. An example of the NFV chain implemented
with FPGAs. In this example, all the NFVs in the chain
are implemented on an FPGA, but this can be chained
with other NFVs implemented in software and other
implementations.

29January/February 2018

areas of future exploration include: debugging plat-
forms, which we can investigate by rerouting pack-
ets between chains and feeding them to a global
debugger, partitioning of a large circuit into multiple
FPGAs, and the complete virtualization of the FPGA.

In thIs pAper, we have described how we have
used OpenStack to provision FPGAs that are availa-
ble as a cloud-based resource. By leveraging the VM
model and features within OpenStack, we show that
it is possible to design and test an FPGA application
entirely in software before committing to the actual
hardware implementation. This is particularly useful
when many FPGAs are chained in an NFV application
as the FPGAs can be individually tested in hardware,
while the rest of the chain is still running in software.
While FPGAs must be handled very differently from
processors running software, it is still possible to lever-
age existing platforms, such as OpenStack, to accom-
modate the inclusion of FPGAs into the cloud. 

Acknowledgments
We would like to thank the SAVI testbed for pro-

viding the infrastructure, NSERC, Xilinx, and CMC/
emSYSCAN for providing the equipment and fund-
ing for this project.

 References
 [1] Amazon Web Services Inc., Amazon Web Services,

2014. [Online]. Accessed: Nov. 16, 2016. Available:

http://aws.amazon.com

 [2] J.-M. Kang et al., “SAVI testbed: Control and

management of converged virtual ICT resources,”

in Proc. IFIP/IEEE Int. Symp. Integr. Network

Management, 2013, pp. 664–667.

 [3] A. Putnum et al., “A reconfigurable fabric for

accelerating large-scale datacenter services,” in Proc.

2014 ACM/IEEE 41st Int. Symp. Comp. Architecture,

2014, pp. 13–24.

 [4] O. Sefraoui et al., “OpenStack: Toward an open-source

solution for cloud computing,” Int. J. Comp. Appl.,

vol. 55, no. 3, pp. 38–42, 2012.

 [5] Xilinx Inc., SDAccel Development Environment, 2016.

[Online]. Accessed: Nov. 12, 2016. Available: https://

www.xilinx.com/products/design-tools/software-zone/

sdaccel.html

 [6] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh,

A. Leon-Garcia, and P. Chow, “Enabling flexible

network FPGA clusters in a heterogenous cloud

data center,” in Proc. Int. Symp. Field-Programmable

Gate Arrays, 2017, pp. 237–246.

 [7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford et al., “OpenFlow: Enabling

innovation in campus networks,” in Proc. ACM SIGCOMM

Comp. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

 [8] S. Byma, N. Tarafdar, T. Xu, H. Bannazadeh,

A. Leon-Garcia, and P. Chow, “Expanding OpenFlow

capabilities with virtualized reconfigurable hardware,”

in Proc. FPGA ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, 2015, pp. 94–97.

 [9] The Khronos Group, OpenCL Standard, 2015.

[Online]. Available: https://www.khronos.org/opencl/

 [10] IBM Research, OpenPOWER Cloud: Accelerating

Cloud Computting, 2016. [Online]. Available: https://

www.research.ibm.com/labs/china/supervessel.html

 [11] A. Caulfield et al., “A cloud-scale acceleration

architecture,” in Proc. 49th Annu. IEEE/ACM Int.

Symp. Microarchitecture, Oct. 2016, pp. 1–13.

 [12] Amazon, Amazon EC2 F1 Instances, 2016. [Online].

Available: https://aws.amazon.com/ec2/instance-types/f1/

 [13] DPDK Intel, Data Plane Development Kit, 2014. [Online].

Accessed October 12, 2016. Available: http://dpdk.org

Naif Tarafdar is currently investigating ways to
provide FPGAs as a sharable resource within cloud
environments. He is a first year PhD candidate at the
University of Toronto.

Nariman Eskandari is a first year MASc
candidate at the University of Toronto. His current
research is focused on providing easy ways to use
FPGAs in cloud environments.

Thomas Lin has been part of the Smart
Applications on Virtualized Infrastructure project
helping to develop a future application-platform
testbed since 2012. He is a third year PhD
candidate at the University of Toronto with a focus
on software-based infrastructure management for
heterogeneous clouds.

Paul Chow holds the Dusan and Anne Miklas
Chair in Engineering Design at the Department of
Electrical and Computer Engineering, University
of Toronto. His primary research interests are
focused around making FPGAs easily usable as
computing devices.

 Direct questions and comments about this article to
Naif Tarafdar, University of Toronto, Toronto, ON, M5S,
Canada; e-mail: naif.tarafdar@mail.utoronto.ca.

http://aws.amazon.com
https://www.research.ibm.com/labs/china/supervessel.html

